MOLECULAR CLONING, EXPRESSION AND FUNCTIONAL INTERACTION OF p48 SUBUNIT OF CHICKEN CHROMATIN ASSEMBLY FACTOR 1 WITH HISTONE DEACETYLASE 2 AND HISTONE ACETYLTRANSFERASE 1

https://doi.org/10.22146/ijc.21375

Ahyar Ahmad(1*)

(1) Biochemistry and Biotechnology Lab., Department of Chemistry, Faculty of Natural Sciences, Hasanuddin University, Makassar, 90245
(*) Corresponding Author

Abstract


We cloned and sequenced cDNA encoding p48 subunit of the chicken CAF-1, chCAF-1p48, and histone acetyltransferase-1, chHAT-1 from chicken DT40 cell lines. We showed that the p48 subunit of CAF-1 tightly binds to two regions of chicken histone deacetylase 2, chHDAC-2, located between amino acid residues 82-180 and 245-314, respectively. We also established that two N-terminal, two C-terminal, or one N-terminal and one C-terminal WD repeat motif of chCAF-1p48 are required for this interaction. The GST pulldown assay, involving truncated and missense mutants of chCAF-1p48, revealed not only that a region containing the seventh WD dipeptide motif of chCAF-1p48, comprising amino acids 376-405, binds to chHAT-1 in vitro, but also that mutation of the motif has no influence on the in vitro interaction. We also established that the region, which is located between amino acids 380-408 of chHAT-1 and contains a leucine zipper motif, is required for its in vitro interaction with chCAF-1p48. Mutation on each of four Leu residues in the leucine zipper motif of chHAT-1 causes the disappearance of the interaction with chCAF-1p48. These results should be useful information for understanding the participation of chCAF-1p48 protein as histones chaperone in DNA-utilizing processes, such as replication, recombination, repair and gene expression in DT40 chicken B cell.

Keywords


Chromatin assembly factor-1; histone deacetylase 2; histone acetyltransferase 1; polymerase chain reaction; polyacrylamide gel electrophoresis

Full Text:

Full Text PDF


References

[1] Luger, K., Mader A.W., Richmond, R.K., Sargent, D.F. and Richmond T.J., 1997, Nature, 389, 251–260.

[2] Takami, Y., and Nakayama, T., 2000, J. Biol. Chem., 275, 21, 16191–16201.

[3] Brehm, A., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., and Kouzarides, T., 1998, Nature, 391, 597–601.

[4] Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., Robin, P., Lorain, S., Le Villain, J.P., Troalen, F., Trouche, D., and Harel-Bellan, A., 1998, Nature, 391, 601–605.

[5] Ito, T., Bulger, M., Kobayashi, R., and Kadonaga, J.T., 1996, Mol. Cell. Biol., 16, 6, 3112–3124.

[6] Verreault, A., Kaufman, P.D., Kobayashi, R., and Stillman, B., 1996, Cell, 87, 1, 95–104.

[7] Neer, E.J., and Smith, T.F., 1996, Cell, 84, 2, 175–178.

[8] Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E., and Sigler, P.B., 1996, Nature, 379, 369–374.

[9] Ahmad, A., 2008, Indo. J. Chem., 8, 3, 454–458.

[10] Ahmad, A., and Karim, H., 2010, Indo. J. Chem., 10, 2, 245–250.

[11] Kaufman, P.D., Kobayashi, R., and Stillman, B., 1997, Genes Dev., 11, 3, 345–357.

[12] Martini, E., Roche, D.M.J., Marheineke, K., Verreault, A., and Almouzni, G., 1998, J. Cell Biol., 143, 3, 563–575.

[13] Groth, A., Rocha, W., Verreault, A., and Almouzni, G., 2007, Cell, 128, 4, 721–733.

[14] Shibahara, K., and Stillman, B., 1999, Cell, 96, 4, 575–585.

[15] Moggs, J.G., Grandi, P., Quivy, J-P., Jónsson, Z.O., Hubscher, U., Becker, P.B., and Almouzni, G., 2000, Mol. Cell. Biol., 20, 4, 1206–1218.

[16] Jiao, R., Harrigan, J.A., Shevelev, I., Dietschy, T., Selak, N., Indig, F.E., Piotrowski, J., Janscak, P., Bohr, V.A., and Stagljar, I., 2007, Oncogene, 26, 3811–3822.

[17] Smith, S., and Stillman, B., 1991, EMBO J., 10, 4, 971–980.

[18] Tyler, J.K., Adams, C.R., Chen, S.R., Kobayashi, R., Kamakaka, R.T., and Kadonaga, J.T., 1999, Nature, 402, 555–560.

[19] Sharp, J.A., Fouts, E.T., Krawitz, D.C., and Kaufman, P.D., 2001, Curr. Biol., 11, 7, 463–473.

[20] Sarraf, S.A., and Stancheva, I., 2004, Mol. Cell, 15, 4, 595–605.

[21] Murzina, N., Verreault, A., Laue, E., and Stillman, B., 1999, Mol. Cell, 4, 4, 529–540.

[22] Ahmad, A., Takami, Y., and Nakayama, T., 1999, J. Biol. Chem., 274, 23, 16646–16653.

[23] Ahmad, A., Nagamatsu, N., Kouriki, H., Takami, Y., and Nakayama, T., 2001, Nucleic Acids Res., 29, 3, 629–637.

[24] Ahmad, A., Takami, Y., and Nakayama, T., 2000, Biochem. Biophys. Res. Commun., 279, 1, 95–102.

[25] Dutnall, R.N., Tafrov, S.T., Sternglanz, R., and Ramakrishnan, V., 1998, Cell, 94, 427–438.

[26] Verreault, A., Kaufman, P.D., Kobayashi, R., and Stillman, B., 1998, Curr. Biol., 8, 2, 96–108.

[27] Shibahara, K., Verreault, A., and Stillman, B., 2000, Proc. Natl. Acad. Sci. U.S.A., 97, 14, 7766–7771.

[28] Sanematsu, F., Takami, Y., Barman, H.K., Fukagawa, T., Ono, T., Shibahara, K., and Nakayama, T., 2006, J. Biol. Chem., 281, 19, 13817–13827.

[29] Donham, D.C., Scorgie, J.K., and Churchill, M.A., 2011, Nucleic Acids Res., 39, 13, 5449–5458.

[30] Abe, T., Sugimura, K., Hosono, Y., Takami, Y., Akita, M., Yoshimura, A., Tada, S., Nakayama, T., Murofushi, H., Okumura, K., Takeda, S., Horikoshi, M., Seki, M., and Enomoto, T., 2011, J. Biol. Chem., 286, 35, 30504–30512.



DOI: https://doi.org/10.22146/ijc.21375

Article Metrics

Abstract views : 1262 | views : 1195


Copyright (c) 2012 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.