Deactivation and Regeneration of Ni/ZA Catalyst in Hydrocracking of Polypropylene

https://doi.org/10.22146/ijc.21258

Imam Khabib(1), Sri Kadarwati(2*), Sri Wahyuni(3)

(1) Department of Chemistry, Semarang State University, Kampus Sekaran, Gunungpati, Semarang 50227
(2) Department of Chemistry, Semarang State University, Kampus Sekaran, Gunungpati, Semarang 50227
(3) Department of Chemistry, Semarang State University, Kampus Sekaran, Gunungpati, Semarang 50227
(*) Corresponding Author

Abstract


The phenomena of catalyst deactivation and the effects of regeneration method on the characteristics and activity of Ni/ZA catalyst after being used in a continuous cracking reaction of polypropylene have been studied. Ni/ZA catalyst was prepared using sonochemical method with total metal intake of 4%. Characteristics and activity of fresh, spent, and regenerated catalyst were evaluated to get a better understanding about the catalyst deactivation. Characteristics which have been observed include catalyst acidity, porosity, crystallinity, and surface morphology. Catalytic activity test of Ni/ZA catalyst on polypropylene cracking reaction at temperature of 500 °C with H2 flow rate of 20 mL/min and catalyst:feed ratio of 1:2 (w/w) showed the decrease of some catalyst characteristics such as specific surface area, total pore volume, and acidity due to coke fouling over a five-times continuous experiment. Regeneration of catalyst with oxidation-reduction method has been able to increase the activity and acidity of catalyst up to 7.47% and 38.54%, respectively, compared to those of spent catalyst, while the catalyst surface area and total pore volume decreased up to 32.83% and 26.92%, respectively.

Keywords


deactivation; Ni/ZA; polypropylene; regeneration

Full Text:

Full Text Pdf


References

[1] Rodiansono, and Trisunaryanti, W., 2005, Indo. J. Chem, 5 (3), 261–268.

[2] Hesse, N.D., and White, R.L., 2004, J. Appl. Polym. Sci., 92 (2), 1293–1301.

[3] Siddiqui, M.N. and Redhwi, H.H., 2009, J. Anal. Appl. Pyrolysis, 86 (1), 141–147.

[4] Walendziewski, J., and Steininger, M., 2001, Catal Today, 65 (2-4), 323–330.

[5] Walendziewski, J., 2002, Fuel, 81(4), 473–481.

[6] Escola, J.M., Aguado, J., Serrano, D.P., García, A., Peral, A., Briones, L., Calvo, R., and Fernandez, E., 2011, Appl. Catal., B, 106 (3-4), 405–415.

[7] Escola, J.M., Aguado, J., Serrano, D.P., Briones, L., Díaz de Tuesta, J.L., Calvo, R., and Fernandez, E., 2012, Energy Fuels, 26 (6), 3187−3195.

[8] Trisunaryanti, W., Wahyuni, E.T., and Sudiono, S., 2005, J. Teknoin, 10 (4), 269–282.

[9] Kadarwati, S., Rahmawati, F., Rahayu, P.E., Wahyuni, S., and Supardi, K.I., 2013, Indo. J. Chem., 13 (1), 77–85.

[10] Suslick, K.S., Hyeon, T., Fang, M., and Cichowlas, A.A., 1995, Mater. Sci. Eng., A, 204 (1-2), 186–192.

[11] Purwanto, W.W., Nasikin, M., and Hapsari, I., 2005, Jurnal Teknologi, 4, 338–344.

[12] Rahmanpour, O., Shariati, A., and Nikou, M.R.K., 2012, Int. J. Chem. Eng. Appl., 3 (2), 125–128.

[13] Dantsin, G., and Suslick, K.S., 2000, J. Am. Chem. Soc., 122 (21), 5214–5215.

[14] Kumar, N., Masloboischikova, O.V., Kustov, L.M., Heikkilä, T., Salmi, T., and Murzin, D.Y., 2007, Ultrason. Sonochem., 14 (2), 122–130.

[15] Furimsky, E., and Massoth, F.E., 1999, Catal. Today, 52 (4), 381–495.

[16] Ancheyta, J., Betancourt, G., Centeno, G., and Marroquín, G., 2003, Energy Fuels, 17 (2), 462–467.

[17] Ardiyanti, A.R., Khromova, S.A., Venderbosch, R.H., Yakovlev, V.A., and Heeres, H.J., 2012, Appl. Catal., B, 117-118, 105–117.

[18] Vogelaar, B.M., Eijsbouts, S., Bergwerff, J.A., and Heiszwolf, J.J., 2010, Catal. Today, 154 (3-4), 256–263.

[19] Trimm, D.L., 2001, Appl. Catal., A, 212 (1-2), 153–160.

[20] Rodiansono, Trisunaryanti, W., and Triyono, 2007, Berkala MIPA, 17 (2), 43–54.

[21] Joo, H.S., and Guin, J.A, 1997, Energy Fuels, 11 (3), 586–592.

[22] Handoko, D.S.P., 2006, Jurnal ILMU DASAR, 7 (1), 42–51.

[23] Svehla, G., 1979, Analisis Anorganik Kualitatif Makro dan Semimikro, PT Kalman Media Pusaka, Jakarta, 376.

[24] Lestari, D.Y., 2010, Kajian Modifikasi dan Karakterisasi Zeolit Alam dari Berbagai Negara, Prosiding Seminar Nasional Kimia dan Pendidikan Kimia, Yogyakarta, Universitas Negeri Yogyakarta.

[25] Irvantino, B., 2013, Preparasi Katalis Ni/Zeolit Alam dengan Metode Sonokimia untuk Perengkahan Katalitik Polipropilena dan Polietilena, Skripsi, Semarang, Universitas Negeri Semarang.

[26] Nugrahaningtyas, K.D., Trisunaryanti, W., Triyono, Nuryono, Dian, M.W., Ari, Y., and Mulyani, 2009, Indo. J. Chem., 9 (2), 177–183.

[27] Yao, S., Yang, C., Tan, Y., and Han, Y., 2008, Catal. Commun., 9 (11-12), 2107–2111.

[28] Trisunaryanti, W., Triyono, and Fatma, T., 2002, Gama Sains, 4 (2), 142–14.

[29] Handoko, D.S.P., 2002, Jurnal ILMU DASAR, 3 (2), 103–109.

[30] Prasetyaningsih, F.E., 2011, Pembuatan Katalis Ni/Zeolit Untuk Reaksi Perengkahan Katalitik Limbah Plastik Menggunakan Fixed Bed Reactor, Skripsi, Semarang, Universitas Diponegoro.



DOI: https://doi.org/10.22146/ijc.21258

Article Metrics

Abstract views : 2073 | views : 1844


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.