Theoretical Analysis of Interaction Energy in Alginate-Capped Gold Nanoparticles Colloidal System

https://doi.org/10.22146/ijc.21234

Foliatini Foliatini(1), Yoki Yulizar(2*), Mas Ayu Elita Hafizah(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424
(3) PT. Clariant Indonesia, Tangerang 15138
(*) Corresponding Author

Abstract


Stability of Au/alginate nanocomposite was theoretically evaluated by computing various interactions energy which contributes in the system, including attraction and repulsion interaction. The results revealed that both polymer and electrostatic charges played a significant role in the stabilization, but the steric repulsion comes from polymer chain is a more effective stabilization mechanism than the electrostatic repulsion. Higher pH yielded in stronger electrostatic repulsion but when the alginate thickness is low the resulting nanocomposite was less stable in a long time period. Interaction energies for Au/alginate nanocomposite colloidal system was up to ~60 kT for alginate thickness of 1 nm, at very short particle-particle separation distance (< 1 nm). As the alginate thickness can be controlled by adjusting the alginate concentration, it can be concluded that the high stability of Au/alginate nanocomposite can be achieved by employing an appropriate amount of alginate concentration.

Keywords


Au/alginate nanocomposite; van der Waals energy; steric repulsion energy; electrostatic energy

Full Text:

Full Text Pdf


References

[1] Liang, Y., Hilal, N., Langston, P., and Starov, V., 2007, Adv. Colloid Interface Sci., 134-135, 151–166.

[2] Moreno-Atanasio, R., Antony, S.J., and Williams, R.A., 2009, Particuology, 7 (2), 106–113.

[3] Lu, K., 2008, Ceram. Int., 34 (6), 1353–1360.

[4] Rakhshaee, R., 2011, J. Hazard. Mater., 197, 144–152.

[5] Pal, A., and Kunio, E., 2007, J. Nanosci. Nanotechnol., 7 (6), 2110–2115.

[6] Kora, A.J., Sashidhar, R.B., and Arunachalam, J., 2010, Carbohydr. Polym., 82 (3), 670–679.

[7] Pandey, S., Goswami, G.K., and Nanda, K.K., 2012, Int. J. Biol. Macromol., 51 (4), 583–589.

[8] Sen, I.K., Maity, K., and Islam, S.S., 2013, Carbohydr. Polym., 91 (2), 518–528.

[9] Romero-Cano, M.S., Martín-Rodríguez, A., and de las Nieves, F.J., 2001, Langmuir, 17 (11), 3505–3511.

[10] Bargeman, D., and van Voorst Vader, F., 1972, J. Electroanal. Chem., 37 (1), 45–52.

[11] Das, S., Sreeram, P.A., and Raychaudhuri, A.K., 2007, Nanotechnology, 18 (3), 035501.

[12] Gu, Y., 2001, J. Adhes. Sci. Technol., 15 (11), 1263–1283.

[13] Leite, E.R., and Ribeiro, C., 2012, Crystallization and Growth of Colloidal Nanocrystals, SpringerBriefs in Materials, DOI 10.1007/978-1-4614-1308-0_2, 15.

[14] Fendler, J.H., 1998, Nanoparticles and nanostructured films: preparation, characterization and applications, Wiley-VCH, New York, Chichester, Brisbane, Singapore, Toronto.

[15] Frischknecht, A.L., 2008, J. Chem. Phys., 128 (22), 224902.

[16] Klein, J., Stock, J., and Vorlop, K.-D., 1983, Eur. J. Appl. Microbiol. Biotechnol., 18 (2), 86–91.

[17] Lin, S., and Wiesner, M.R., 2012, Chem. Eng. J., 191, 297–305.

[18] Lin, S., and Wiesner, M.R., 2012, Langmuir, 28 (43), 15233−15245.



DOI: https://doi.org/10.22146/ijc.21234

Article Metrics

Abstract views : 1752 | views : 1767


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.