Theoretical Analysis of Interaction Energy in Alginate-Capped Gold Nanoparticles Colloidal System

Foliatini Foliatini(1), Yoki Yulizar(2*), Mas Ayu Elita Hafizah(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424
(3) PT. Clariant Indonesia, Tangerang 15138
(*) Corresponding Author


Stability of Au/alginate nanocomposite was theoretically evaluated by computing various interactions energy which contributes in the system, including attraction and repulsion interaction. The results revealed that both polymer and electrostatic charges played a significant role in the stabilization, but the steric repulsion comes from polymer chain is a more effective stabilization mechanism than the electrostatic repulsion. Higher pH yielded in stronger electrostatic repulsion but when the alginate thickness is low the resulting nanocomposite was less stable in a long time period. Interaction energies for Au/alginate nanocomposite colloidal system was up to ~60 kT for alginate thickness of 1 nm, at very short particle-particle separation distance (< 1 nm). As the alginate thickness can be controlled by adjusting the alginate concentration, it can be concluded that the high stability of Au/alginate nanocomposite can be achieved by employing an appropriate amount of alginate concentration.


Au/alginate nanocomposite; van der Waals energy; steric repulsion energy; electrostatic energy

Full Text:

Full Text Pdf


Article Metrics

Abstract views : 514 | views : 628

Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.