Adsorption Isotherm Studies on Acid Orange-10 Dye Removal using Cerium Dioxide Nanoparticles

https://doi.org/10.22146/ijc.21232

Harry Budiman(1), Oman Zuas(2*)

(1) Research Centre for Chemistry, Indonesian Institute of Science (RCChem-LIPI), Kawasan PUSPIPTEK Serpong, 15314 Tangerang, Banten
(2) Research Centre for Chemistry, Indonesian Institute of Science (RCChem-LIPI), Kawasan PUSPIPTEK Serpong, 15314 Tangerang, Banten
(*) Corresponding Author

Abstract


The adsorption capacity of AO-10 from aqueous solution onto CeO2-NPs was investigated under various reaction parameters. Batch mode experiments were conducted to assess the potential of the CeO2-NPs as adsorbent for the removal of AO-10 dye from aqueous solution. Equilibrium isotherm studies were carried out under an optimum reaction condition (i.e., AO-10 dye concentration = 15 mg/L, CeO2-NPS dosage = 2 g/L, pH of dye solution = 2) obtained from this study. The equilibrium data obtained were fitted to Langmuir, Freundlich, and Redlich-Peterson isotherm models. The results shows that, the linear transform model provided the highest regression coefficient (R2 = 0.991) with the Langmuir model. The maximum monolayer adsorption capacity was found to be 33.33 mg/g at 30 °C, which is higher than some data from published literature.

Keywords


dye; adsorption; isotherms; CeO2

Full Text:

Full Text Pdf


References

[1] Priya, M.S., Divyashree, K., Goswami, C., Prabha, M.L., and Babu, A.K.S., 2013, Int. J. Eng. Adv. Technol., 2 (4), 913–918.

[2] Pavanelli, S.P., Bispo, G.L., Nascentes, C.C., and Augusti, R., 2011, J. Braz. Chem. Soc., 22 (1), 111–119.

[3] Annadurai, G., Juang, R.S. and Lee, D.J., 2002, J. Hazard. Mater., B92, 263–274.

[4] Olaniyi, I., Raphaeel, O., and Onyebuchi, N.J., 2012, Arch. Appl. Sci. Res., 4 (1), 406–413.

[5] Rasul, M.G., Faisal, I., and Khan, M.M.K., 2006, Int. J. Environ. Pollut., 28 (1-2), 144–161.

[6] Namasivayam, C., Radhika, R., and Suba, S., 2001, Waste Manage., 21 (4), 381–387.

[7] Hariharan, C., 2006, Appl.Catal., A, 304, 55–61.

[8] Sun, Q., and Yang, L., 2003, Water Res., 37 (7), 1535–1544.

[9] Nigam, P., Banat, I.M., Singh, D., and Marchant, R., 1996, Proc. Biochem., 31 (5), 435–442.

[10] Pandit, P., and Basu, S., 2004, Ind. Eng. Chem. Res., 43 (24), 7861–7864.

[11] Masykur, A., Santosa, S.J., Siswanta, D., and Jumina, 2014, Indo. J. Chem., 14 (1), 63–70.

[12] Abdelkader, N.B-H., Bentouami, A., Derriche, Z., Bettahar, N., and de Ménorval, L.-C, 2011, Chem. Eng. J., 169 (1-3), 231–238.

[13] Zuas, O., and Budiman, H., 2013, Nano-Micro Lett., 5 (1), 26–33.

[14] Atia, A.A., Donia, A.M., and Al-Amrani, W.A., 2009, Chem. Eng. J., 150 (1), 55–62.

[15] Meral, K., and Metin, O., 2014, Turk. J. Chem., 1–8.

[16] Konicki, W., Sibera, D., Mijowska, E., Lendzion-Bieluń, Z., and Narkiewicz, U., 2013, Colloid Interface Sci., 398, 152–160.

[17] Salehi, R., Arami, M., Mahmoodi, N.M., Bahrami, H., and Khorramfar, S., 2010, Colloids Surf., B, 80 (1), 86–93.

[18] Zuas, O., Abimanyu, H., and Wibowo, W., 2014, Proc. Appl. Ceram., 8 (1), 39–46.

[19] AMRESCO Safety Data Sheet of Acid Orange 10, 2014, http://www.amresco-inc.com/media.acux?path=/media/products/msds/MSDS-E783.pdf, accessed on 4 June 2014.

[20] Lopez-Ramon, F.M., Stoeckli, V., Moreno-Castilla, C., and Carrasco-Marin, F., 1999, Carbon, 37 (8), 1215–1221.

[21] Al-Degs, Y.S., El-Barghouthi, M.I., El-Sheikh, A.H., and Walker, G.M., 2008, Dyes Pigm., 77 (1), 16–23.

[22] Khezami, L., and Capart, R., 2005, Hazard. Mater., 123 (1-3), 223–231.

[23] Ghaedi, M., Heidarpour, Sh., Kokhdan, S.N., Sahraie, R., Daneshfar, A., and Brazesh, B., 2012, Powder Technol., 228, 18–25.

[24] Garg, V.K., Gupta, R., Yadav, A.B., and Kumar, R., 2003, Bioresour. Technol., 89 (2), 121–124.

[25] Khare, P., and Kumar, A., 2012, Appl. Water Sci., 2 (4), 317–326.

[26] Dursun, G., Ciçek, H., and Dursun, A.Y., 2005, J. Hazard. Mater., 125 (1-3), 175–182.

[27] Dąbrowski, A., Podkościelny, P., Hubicki, Z., and Barczak, M., 2005, Chemosphere, 58 (8), 1049–1070.

[28] Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.-P., and Li, N., 2012, Chem. Eng. J., 157 (2-3), 348–356.

[29] Cheung, W.H., Szeto, Y.S., and Mckay, G., 2009, Bioresour. Technol., 100 (3), 1143–1148.

[30] Mall, I.D., Srivastava, V.C., and Agarwal, N.K., 2006, Dyes Pigm., 6 (3), 210–223.

[31] Tan, L.A.W., Ahmad, A.L., and Hameed, B.H., 2009, J. Hazard. Mater., 164 (2-3), 473–482.

[32] Hameed, B.H., and El-Khaiary, M.I., 2008, J. Hazard. Mater., 157 (2-3), 344–351.

[33] Ho, Y-S., Malarvizhi, R., and Sulochana, N., 2009, J. Environ. Prot. Sci., 3, 111–116.

[34] Arulkumar, M., Sathishkumar, P., and Palvannan, T., 2011, J. Hazard. Mater., 186 (1), 827–834.

[35] Singh, J., Uma, Mishra, N. S., Banerjee, S., Gusain, D., and Sharma, Y.C., 2011, Appl. Sci. Environ. Sanit., 6 (3), 2732–2743.

[36] Tsai, W.T., Chang, C.Y., Lin, M.C., Chien, S.F., Sun, H.F., and Hsieh, M.F., 2011, Chemosphere, 45 (1), 51–58.



DOI: https://doi.org/10.22146/ijc.21232

Article Metrics

Abstract views : 2450 | views : 2004


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.