Photocatalytic Decolorization Study of Methyl Orange by TiO2–Chitosan Nanocomposites

https://doi.org/10.22146/ijc.21230

Imelda Fajriati(1*), Mudasir Mudasir(2), Endang Tri Wahyuni(3)

(1) Department of Chemistry, State Islamic University Sunan Kaliaga, Jl. Marsda Adisucipto Yogyakarta 55281
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(*) Corresponding Author

Abstract


The photocatalytic decolorization of methyl orange (MO) by TiO2-chitosan nanocomposite has been studied. This study was started by synthesizing TiO2-chitosan nanocomposites using sol-gel method with various concentrations of Titanium(IV) isopropoxide (TTIP) as the TiO2 precursor. The structure, surface morphology, thermal and optical property of TiO2-chitosan nanocomposite were characterized by X-ray diffraction (XRD), fourier transform infra red (FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and diffuse reflectance ultra violet (DRUV) spectroscopy. The photocatalytic activity of TiO2-chitosan nanocomposite was evaluated by photocatalytic decolorization of methyl orange as a model pollutant. The results indicate that the particle size of TiO2 increases with increasing ofthe concentration of TTIP, in which TiO2 with smallest particle size exhibit the highest photocatalytic activity. The highest photocatalytic decolorization was obtained at 5 h of contact time, initial concentration of MO at 20 ppm and at solution pH of 4. Using these conditions, over 90% of MO was able to be decolorized using 0.02 g of TiO2-chitosan nanocomposite under UV light irradiation. The TiO2-chitosan nanocomposite could be reused, which meant that the TiO2-chitosan nanocomposites can be developed as an effective and economical photocatalyst to decolorize or treat dye in wastewater.

Keywords


TiO2-chitosan nanocomposites; decolorization; methyl orange

Full Text:

Full Text Pdf


References

[1] Guettai, N., and Amar, H.A., 2005, Desalination, 185 (1-3), 439–448.

[2] Robinson, T., McMullan, G., Marchant, R., and Nigam, P., 2001, Bioresour. Technol., 77 (3), 247–255.

[3] Kabra, K., Chaudhary, R., and Sawhney, R.L., 2004, Ind. Eng. Chem. Res., 43 (24), 7683–7696.

[4] Fernández-García, M., Wang, X., Belver, C., Hanson, J.C., and Rodriguez, J.A., 2007, J. Phys. Chem. C, 111 (2), 674-682.

[5] Wahyuni, E.T, Kunarti, E.S., and Mudasir, 2010, J. Ion Exch., 21 (3), 304–309.

[6] Fatimah, I., and Wijaya, K., 2006, Teknoin, 10 (4), 257–267.

[7] Andayani, W., and Sumartono, A., 2007, Indo. J. Chem., 7 (3), 238–241.

[8] Pandiangan, D.K., and Simanjuntak, W., 2013, Indo. J. Chem., 13 (1), 47–52.

[9] Shifu, C., Xueli, C., Yaowu, T., and Mengyue, Z., 1998, J. Chem. Technol. Biotechnol., 73 (3), 264–268.

[10] Zhao, X., Li, Q., Zhang, X., Su, H., Lan, K., and Chen, A., 2010, Environ. Prog. Sustainable Energy, 30 (4), 567–575.

[11] Zhaoa, X., Lv, L., Pan, B., Zhang, W., Zhang, S., and Zhang, Q., 2011, Chem. Eng. J., 170 (2-3), 381–394.

[12] Chang, S., Kang, B., Dai, Y., Zhang, H., and Chen, D., 2011, Nanoscale Res. Lett., 6 (1), 591.

[13] Fajriati, I., Mudasir, and Wahyuni, E.T., 2013, Proceeding of The 3rd Annual Basic Science Int`l Conference 2013, Faculty Mathematic and Natural Science, University of Brawijaya, Malang of Indonesia, C1–C10.

[14] Wahyuni, E.T., Aprilita, N.H., Hayu, A.H. F., Nurhayati, F.S., 2008, Jurnal Manusia dan Lingkungan, 15 (1), 10–15.

[15] Al-Sagheer, F.A., and Merchant, S., 2011, Carbohydr. Polym., 85 (2), 356–362.

[16] Tao, Y., Pan, J., Yan, S., Tang, B., and Zhu, L., 2007, Mater. Sci. Eng., B, 138 (1), 84–89.

[17] Li, Q., Su, H., and Tan, T., 2008, Biochem. Eng. J., 38 (2), 212–218.

[18] Zhu, H., Jiang, R., Fu, Y., Guan, Y., Yao, J., Xiao, L., and Zeng, G., 2012, Desalination, 286, 41–48.

[19] Zhua, H., Jiang, R., Xiao, L., Chang, Y., Guan, Y., Li, X., and Zeng, G., 2009, J. Hazard. Mater., 169 (1-3), 933–940.

[20] Wang, S., Huang, Y., Zheng, M., Wei, Y., Huang, S., and Gu, Y., 2011, Adv. Polym. Technol., 30 (4), 269–275.

[21] Lertworasirikul, A., Noguchi, K., Ogawa, K., and Okuyama, K., 2004, Carbohydr. Res., 339 (4), 835–843.

[22] Murphy, A.B., 2007, Sol. Energy Mater. Sol. Cells, 91 (14), 1326–1337.

[23] Díaz-Visurraga, J., Meléndrez, M.F., García, A., Paulraj, M., and Cárdenas, G., 2010, J. Appl. Polym. Sci., 116 (6), 3503–3515.

[24] Hoffmann, M.R., Martin, S.T., Wonyong, C., and Bahnemann, D.W., 1995, Chem. Rev., 95 (1), 69–96.

[25] Barka, N., Assabbane, A., Nounah, A., Dussaud, J., and Ichou, Y.A., 2008, Phys. Chem. News, 41, 85–88.



DOI: https://doi.org/10.22146/ijc.21230

Article Metrics

Abstract views : 3467 | views : 3880


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.