Synthesis and Characterization of Alumina Precursors Derived from Aluminum Metal through Electrochemical Method

https://doi.org/10.22146/ijc.21205

Eva Marlina Ginting(1*), Nurdin Bukit(2)

(1) Department of Physics, Faculty of Mathematics and Natural Sciences ,University State of Medan, Jl. Williem Iskandar Psr V, Medan 20221
(2) Department of Physics, Faculty of Mathematics and Natural Sciences ,University State of Medan, Jl. Williem Iskandar Psr V, Medan 20221
(*) Corresponding Author

Abstract


This study investigated the use of the electrochemical method to prepare alumina (a-Al2O3) from aluminum metal. The a-Al2O3 precursor was calcined at 110 °C for six hours and then characterized using Fourier Transform Infrared (FTIR) spectroscopy, Particle Size Analysis (PSA), X-Ray Diffraction spectroscopy (XRD), and Scanning Electron Microscopy (SEM). To study transformation of the precursor into α-Al2O3, three samples were sintered at 400, 800, and 1200 °C, respectively and they were characterized. The most interesting result obtained was the transition of AlOOH and β-Al(OH)3 into γ-Al2O3 at low temperatures (400 to 800°C), followed by transformation of γ-Al2O3 into a-Al2O3 at high temperature (1200 °C). The overall results obtained demonstrated that electrochemical method is a potential alternative for production of α-Al2O3, which can be achieved in practically pure phase at sintering temperature at 1200 °C.

Keywords


alumina; electrochemical; sintering; structure; microstructure

Full Text:

Full Text Pdf


References

[1] Tijburg, I.I.M., De Bruin, H., Elberse, P.A., and Geus, J.W., 1991, J. Mater. Sci., 26(21), 5945–5949.

[2] Wefers, K., and Misra, C., 1987, Oxides and Hydoxides of Aluminum, Alcoa Laboratories, Aluminum Company of America, Pittsburgh, 47.

[3] Hart, L.D., 1990, Alumina Chemicals: Science and Technology Handbook, 1st ed. Wiley-American Ceramic Society, Columbus Ohio, USA.

[4] Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Lee, T.Y.R., 1984, Thermal Expansion Nonmetallic Solids (Thermophysical Properties of Matter), New York: IFI/Plenum, 176–177.

[5] Dorre, E., and Hubner, H., 1984, Alumina-Processing and Application, Berlin: Springer-Verlag, 1–267

[6] Morrell, R., 1987, Handbook of Properties of Technical and Engineering Ceramic Society, Part 2, Data Reviews, Sect. I. High-Alumina Ceramics, London, 255.

[7] Lach, R., Haberko, K., Bućko, M.M., Szumera, M., and Grabowski, G., 2011, J. Eur. Ceram. Soc. 31(10), 1889–1895.

[8] Michizono, S., Saito, Y., Suharyanto, Yamano, Y., and Kobayashi, S., 2007, Vacuum, 81(6), 762–765.

[9] Keyvani, A., Saremi, M., and Sohi, M.H., 2010, J. Alloys Compd., 506(1), 103–108.

[10] Laachachi, A., Ferriol, M., Cochez, M., Cuesta, J.M.L., and Ruch, D., 2009, Polym. Degrad. Stab., 94(9), 1373–1378.

[11] Lukić, I., Krstić, J., Jovanović, D., and Skala, D., 2009, Bioresour. Technol., 100(20), 4690–4696.

[12] Ganesh, I., Torres, P.M.C., and Ferreira, J.M.F., 2009, Ceram. Int., 35(3), 1173–1180.

[13] Keizer, K., Uhlhorn, R.J.R., van Vuren, R.J., and Burggraaf, A.J., 1988, Membr. Sci., 39(3), 285–300.

[14] Lin, Y.S., and Burggraaf, A.J., 1991, J. Am. Ceram. Soc., 74(1), 219–224.

[15] Herth, G.R., Johnson, T.D, Parry M.T., and Wall, D.J., 1990, Br. Ceram. Trans., 89(1), 17–21.

[16] Medvedovski, E., 2000, Interceram, 49(2), 106–113.

[17] Medvedovski, E., 2001, Wear, 249, 821–828.

[18] Medvedovski, E., 2002, Am. Ceram. Soc. Bull., 81(3), 27–32.

[19] Reid, C.B., Forrester, J.S., Goodshaw, H.J., Kisi, E.H., and Suaning, G.J., 2008, Ceram. Int., 34(6), 1551–1556.

[20] Mirjalili, F., Hasmaliza, M., and Abdullah, L.C., 2010, Ceram. Int., 36(4), 1253–1257.

[21] Kavitha, R., and Jayaram, V., 2006, Surf. Coat. Technol., 201(6), 2491–2499.

[22] Trinh, D.H., Ottosson, M., Collin, M., Reineck, I., Hultman, L., and Högberg, H., 2008, Thin Solid Films, 516(15), 4977–4982.

[23] Qu, L., He, C., Yang, Y., He, Y., and Liu, Z., 2005, Mater. Lett., 59(29-30), 4034–4037.

[24] Yatsui K., Yukawa, T., Grigoriu, C., Hirai, M., and Jiang, W., 2000, J. Nanopart. Res., 2(1), 75–83.

[25] Zhou, Y., Phillips, R.J., and Switzer, J.A., 1995, J. Am. Ceram. Soc., 78(4), 981–986.

[26] Zhou, Y., and Switzer, J.A., 1996, J. Alloys Compd., 237(1-2), 1–5.

[27] Narayanan, T.S.N.S., and Seshadri, S.K., 2000, J. Mater. Sci. Lett., 19(19), 1715–1718.

[28] Liang, L.J., Jin, H., Jun, W.K., and Qin, Z.X., 2010, Adv. Mater. Res., 105-106, 805–807.

[29] Urretavizcaya, G., Cavalieri, A.L., López, J.M.P., Sobrados, I., and Sanz, J., 1998, J. Mater. Synth. Process., 6(1), 1–7.

[30] Cava, S., Tebcherani, S.M., Souza, I.A., Pianaro, S.A., Paskocimas, C.A, Longo, E., and Varela, J.A., 2007, Mater. Chem. Phys., 103(2-3), 394–399.

[31] Bustanafruz, F., Tafreshi, M.J., and Fazli, M, 2013, J. Nanostruct., 2(4), 463–468.

[32] Swaddle, T.W., 2001, Coord. Chem. Rev., 219-221, 665–686.

[33] Holt, P.K., Barton, G.W., Wark, M., and Mitchell, C.A., 2002, Colloids Surf., A, 211(2-3), 233–248.

[34] JADE, 1997, Program XRD Pattern Processing PC, Materials Data Inc. (MDI), Livermore, CA.

[35] Adam, F., and Chua, J.H., 2004, J. Colloid Interface Sci., 280(1), 55–61.

[36] Chandradass, J., and Kim, K.H., 2009, Mater. Manuf. Process., 24, 541–454.

[37] Colomban, Ph., 1989, J. Mater. Sci., 24, 3002–3006.

[38] Ue, M., Mizutani, F., Takeuchi, S., and Sato, N., 1997, J. Electrochem. Soc., 144(11), 3743–3748.

[39] Powder Diffraction File (Type PDF-2), 1997, Diffraction Data for XRD Identification, International Centre for Diffraction Data, PA, USA.



DOI: https://doi.org/10.22146/ijc.21205

Article Metrics

Abstract views : 2192 | views : 3261


Copyright (c) 2015 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.