Characteristics of Nanosize Spinel NixFe3-xO4 Prepared by Sol-Gel Method Using Egg White as Emulsifying Agent

https://doi.org/10.22146/ijc.21204

Rudy Situmeang(1*), Sukma Wibowo(2), Wasinton Simanjuntak(3), R. Supryanto(4), Rizki Amalia(5), Mitra Septanto(6), Posman Manurung(7), Simon Sembiring(8)

(1) Department of Chemistry, University of Lampung, Jl. Prof. Soemantri Brodjonegoro No. 1 Bandar Lampung 35145
(2) Department of Chemistry, University of Lampung, Jl. Prof. Soemantri Brodjonegoro No. 1 Bandar Lampung 35145
(3) Department of Chemistry, University of Lampung, Jl. Prof. Soemantri Brodjonegoro No. 1 Bandar Lampung 35145
(4) Department of Chemistry, University of Lampung, Jl. Prof. Soemantri Brodjonegoro No. 1 Bandar Lampung 35145
(5) Department of Chemistry, University of Lampung, Jl. Prof. Soemantri Brodjonegoro No. 1 Bandar Lampung 35145
(6) Department of Chemistry, University of Lampung, Jl. Prof. Soemantri Brodjonegoro No. 1 Bandar Lampung 35145
(7) Department of Physics, University of Lampung, Jl. Prof. Soemantri Brodjonegoro No. 1 Bandar Lampung 35145
(8) Department of Physics, University of Lampung, Jl. Prof. Soemantri Brodjonegoro No. 1 Bandar Lampung 35145
(*) Corresponding Author

Abstract


In this study, sol-gel method using egg white as emulsifying agent was applied to prepare nano size spinel NixFe3-xO4 (with x = 0.2–1). Sample preparation was carried out by mixing the solution of Fe(NO3)3.9 H2O and Ni(NO3)3.6 H2O with egg white, and then the sample was stirred thoroughly using magnetic stirrer. After freeze–drying process, the sample was subjected to calcination treatment and subsequently characterized. The phase composition was evaluated using the X-ray diffraction (XRD) technique, followed by quantitative analysis using Rietveld and Debye-Scherrer Methods. The functionality of the sample was identified using Fourier Transform Infrared (FTIR) spectroscopy, and surface morphology and elemental composition were analyzed using scanning electron microscopycoupled with electron dispersive spectroscopy (SEM/EDS). The results of XRD characterization indicated that materials consist of various crystalline phases, with NiFe2O4 as a major phase. FTIR Analysis revealed the existence of both Lewis and Brønsted–Lowry acid sites, with Lewis acid as the prominent site. The sample was found to display relatively homogeneous surface morphology, having the crystallite size in the range of 33 to 61 nm according to the Debye-Scherrer equation. The EDS data indicated that the ratio of Fe/Ni is in agreement with the composition of the raw materials used.

Keywords


nanomaterial; sol-gel method; Brønsted-Lowry and Lewis acid sites

Full Text:

Full Text Pdf


References

[1] Kumbhar, S.S., Mahadik, M.A., Mohite, V.S., Rajpure, K.Y., and Bhosale, C.H., 2014, Energy Procedia, 54, 599–605.

[2] Valenzuela, R., Zamorano, R., Alvarez, G., Gutiérrez, M.P., and Montiel, H., 2007, J. Non-Cryst. Solids, 353(8-10), 768–772.

[3] Jacob, B.P., Kumar, A., Pant, R.P., Singh, S., and Mohammed, E.M., 2011, Bull. Mater. Sci., 34(7), 1345–1350.

[4] Chung, Y-M., Kwon, Y-T., Kim, T.J., Lee, S.J., and Oh, S-H., 2009, Catal. Lett., 131(3-4), 579–586.

[5] Wolska, J., Przepiera, K., Grabowska, H., Przepiera, A., Jabłonski, M., and Klimkiewicz, R., 2008, Res. Chem. Intermed., 34(1), 43.

[6] Nejati, K., and Zabihi, R., 2012, Chem. Cen. J., 6, 23.

[7] Chen, D.H., and He, X.R., 2001, Mater. Res. Bull., 36(7-8), 1369–1377.

[8] Yang, J.M., Tsuo, W.J., and Yen, F.S., 1999, J. Solid State Chem., 145(1), 50–57.

[9] Zhou, J., Ma, J., Sun, C., Xie, L., Zhao, Z., Tian, H., Wang, Y., Tao, J., and Zhu, X., 2005, J. Am. Ceram. Soc., 88(12), 3535 –3537.

[10] Prasad, S., and Gajbhiye, N.S., 1998, J. Alloys Compd., 265(1-2), 87–92.

[11] Perego, C., and Villa, P., 1997, Catal. Today, 34, 281–305.

[12] Kumar, P., Mishra, P., and Sahu, S.K., 2011, Int. J. Sci. Eng. Res., 2(8), 1–4.

[13] Maensiri, S., Masingboon, C., Boonchom, B., and Seraphin, S., 2007, Scr. Mater., 56, 797–800.

[14] Zahi, S., Daud, A.R., and Hashim, M., 2007, Mater. Chem. Phys., 106(2-3), 452–456.

[15] Abbas, T., Hussein, A., and Niazi, S. B., 2009, J. Res. (Sci.), 20-21(1-4), 19–27.

[16] Plocek, J., Hutlová, A., Nižňanský, D., Buršík, J., Rehspringer, J.-L., and Mička, Z., 2005, Mater. Sci.-Poland, 23(3), 697–705.

[17] Wang, L., Li, J., Lu, M., Dong, H., Hua, J., Xu, S., and Li, H., 2015, J. Supercond. Novel Magn., 28(1), 191–196.

[18] Li, D-Y., Sun, Y-K., Gao, P-Z., Zhang, X-L., and Ge, H-L., 2014, Ceram. Int., 40(10), Part B, 16529–16534.

[19] Ali, I.O., 2014, J. Therm. Anal. Calorim., 116(2), 805–816.

[20] Sutka, A., and Mezinskis, G., 2012, Front. Mater. Sci. China, 6(2), 128–141.

[21] Sutka, A., Mezinskis, G., Jakovlevs, D., and Korsaks, V., 2013, J. Aust. Ceram. Soc., 49(2), 136–140.

[22] Sivakumar, P., Ramesh, R., Ramanand, A., Ponmeshamy, S., and Methamizh, C., 2011, Mater. Res. Bull., 46(2), 2204–2207.

[23] Rietveld., H.M., 1969, J. Appl. Crystallogr., 2, 65–71.

[24] Cullity, B.D., 1978, Elements of X-ray Diffraction, 2nd ed. Addison-Wesley, London, 102.

[25] Hanke, L. D., 2001, Handbook of Analytical Methods for Materials, Materials Evaluation and Engineering Inc., Plymouth, 35–38.

[26] Parry, E.P., 1963, J. Catal., 2(5), 371–379.

[27] ASTM 4824-13., 2013, Test method for Determination of catalyst acidity by pyridine chemisorption, MNL 58-EB.

[28] Ryczkowski, J., 2001, Catal. Today, 68(4), 263–381.

[29] Sutka, A., Mezinskis, G., Pludons, A., and Lagzdina, S., 2010, Energetika, 56(3-4), 254–259.

[30] Carta, D., Loche, D., Mountjoy, G., Navarra, G., and Corrias, A., 2008, J. Phys. Chem. C, 112(40), 15623–15630.

[31] Powder Diffraction File, 1997, Diffraction Data for XRD Identification, International Centre for Diffraction Data, PA, USA.

[32] Lazarević, Z.Ž., Jovalekić, Č., Milutinović, A., Romčević, M.J., and Romčević N.Ž., 2012, Acta Phys. Pol. A, 121(3), 682–686.

[33] Kim, J-S., Ahn, J-R., Lee, C.W., Murakami, Y., and Shindo, D., 2001, J. Mater. Chem., 11, 3373–3376.

[34] Zhiqiang, W., Hongxia, Q., Hua, Y., Cairong, Z., and Xiaoyan, Y., 2009, J. Alloys Compd., 479(1-2), 855–858.

[35] Yurdakoç, M., Akçay, M., Tonbul, Y., and Yurdakoç, K., 1999, Turk. J. Chem., 23(3), 319–327.

[36] Tanabe, K., 1970, Solid Acids and Bases, their catalytic properties, Kodansha Ltd., Tokyo-Japan, Academic Press, New York - London, 58.



DOI: https://doi.org/10.22146/ijc.21204

Article Metrics

Abstract views : 2068 | views : 1826


Copyright (c) 2015 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.