Morphological and Crystallinity Studies of Nanofiber Cellulose Based on Sargassum sp. Using Multistep Preparation

https://doi.org/10.22146/ijc.104211

Nurhayati Nurhayati(1), Hari Eko Irianto(2), Mochamad Chalid(3), Rini Riastuti(4*)

(1) Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia; Research Center for Marine and Land Bioindustry, National Research and Innovation Agency, Tangerang Selatan 15314, Indonesia; Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Cibinong 16911, Indonesia
(2) Research Center for Marine and Land Bioindustry, National Research and Innovation Agency, Tangerang Selatan 15314, Indonesia; Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Cibinong 16911, Indonesia; Food and Technology Study Program, Faculty of Food Technology and Health, Sahid University, Jakarta 12870, Indonesia
(3) Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia; Center for Sustainable and Waste Management, Universitas Indonesia, Depok 16424, Indonesia
(4) Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
(*) Corresponding Author

Abstract


This study aims to investigate the crystallinity and morphological characteristics of cellulose nanofibers (CNF) isolated from Sargassum seaweed through a multistep preparation. The isolation was conducted in stages, including alkalinization, bleaching, and mechanical reduction in fiber size. In addition to observing the outcomes at each isolation stage, three mechanical processes were implemented to generate CNF. The observed parameters included fiber morphology analyzed using scanning electron microscopy (SEM) and fiber crystallinity tested using X-ray diffraction (XRD). The results indicated that Sargassum mostly exhibits a type Iα structure of cellulose. The multistep treatment, combined with mechanical processing, resulted in finer fibers and an improved crystallinity index, reaching a maximum value of 70.39%. These findings suggest that cellulose nanofibers from Sargassum have the potential to be used in sustainable biomedical materials.

Keywords


Sargassum sp.; cellulose nanofiber; multistep preparation

Full Text:

Full Text PDF


References

[1] Ratna, R., Arahman, N., Munawar, A.A., and Aprilia, S., 2023, Extraction, isolation, and characterization of nanocrystalline cellulose from barangan banana (Musa acuminata L.) peduncles waste, Indones. J. Chem., 23 (1), 73–89.

[2] Baghel, R.S., Reddy, C.R.K., and Singh, R.P., 2021, Seaweed-based cellulose: Applications, and future perspectives, Carbohydr. Polym., 267, 118241.

[3] Zhang, W., Wang, X., Qi, X., Ren, L., and Qiang, T., 2018, Isolation and identification of a bacterial cellulose synthesizing strain from kombucha in different conditions: Gluconacetobacter xylinus ZHCJ618, Food Sci. Biotechnol., 27 (3), 705–713.

[4] Madhushree, M., Vairavel, P., Mahesha, G.T., and Bhat, K.S., 2024, A comprehensive review of cellulose and cellulose-based materials: Extraction, modification, and sustainable applications, J. Nat. Fibers, 21 (1), 2418357.

[5] Doh, H., Dunno, K.D., and Whiteside, W.S., 2020, Cellulose nanocrystal effects on the biodegradability with alginate and crude seaweed extract nanocomposite films, Food Biosci., 38, 100795.

[6] He, Q., Wang, Q., Zhou, H., Ren, D., He, Y., Cong, H., and Wu, L., 2018, Highly crystalline cellulose from brown seaweed Saccharina japonica: Isolation, characterization and microcrystallization, Cellulose, 25 (10), 5523–5533.

[7] Md Zaini, H.H., Mohammad-Noor, N., and Zainuddin, Z., 2021, Preliminary study on nanocellulose production in local seaweeds, Int. STEM J., 2 (1), 36–42.

[8] Siddhanta, A.K., Chhatbar, M.U., Mehta, G.K., Sanandiya, N.D., Kumar, S., Oza, M.D., Prasad, K., and Meena, R., 2011, The cellulose contents of Indian seaweeds, J. Appl. Phycol., 23 (5), 919–923.

[9] Wahlström, N., Edlund, U., Pavia, H., Toth, G., Jaworski, A., Pell, A.J., Choong, F.X., Shirani, H., Nilsson, K.P.R., and Richter-Dahlfors, A., 2020, Cellulose from the green macroalgae Ulva lactuca: Isolation, characterization, optotracing, and production of cellulose nanofibrils, Cellulose, 27 (7), 3707–3725.

[10] Salem, D.M.S.A., and Ismail, M.M., 2022, Characterization of cellulose and cellulose nanofibers isolated from various seaweed species, Egypt. J. Aquat. Res., 48 (4), 307–313.

[11] Jmel, M.A., Anders, N., Ben Messaoud, G., Marzouki, M.N., Spiess, A., and Smaali, I., 2019, The stranded macroalga Ulva lactuca as a new alternative source of cellulose: Extraction, physicochemical and rheological characterization, J. Cleaner Prod., 234, 1421–1427.

[12] Chen, Y.W., Lee, H.V., Juan, J.C., and Phang, S.M., 2016, Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans, Carbohydr. Polym., 151, 1210–1219.

[13] Bogolitsyn, K., Parshina, A., and Aleshina, L., 2020, Structural features of brown algae cellulose, Cellulose, 27 (17), 9787–9800.

[14] Gomaa, M., Al-Badaani, A.A., Hifney, A.F., and Adam, M.S., 2021, Industrial optimization of alkaline and bleaching conditions for cellulose extraction from the marine seaweed Ulva lactuca, J. Appl. Phycol., 33 (6), 4093–4103.

[15] Prakash Menon, M., Selvakumar, R., Suresh Kumar, P., and Ramakrishna, S., 2017, Extraction and modification of cellulose nanofibers derived from biomass for environmental application, RSC Adv., 7 (68), 42750–42773.

[16] Wang, T., and Zhao, Y., 2021, Optimization of bleaching process for cellulose extraction from apple and kale pomace and evaluation of their potentials as film forming materials, Carbohydr. Polym., 253, 117225.

[17] El-Ghoul, Y., Altuwayjiri, A.S., and Alharbi, G.A., 2024, Synthesis and characterization of new electrospun medical scaffold-based modified cellulose nanofiber and bioactive natural propolis for potential wound dressing applications, RSC Adv., 14 (36), 26183–26197.

[18] Yue, Y., Han, J., Han, G., French, A.D., Qi, Y., and Wu, Q., 2016, Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization, Carbohydr. Polym., 147, 155–164.

[19] Dilamian, M., and Noroozi, B., 2019, A combined homogenization-high intensity ultrasonication process for individualization of cellulose micro-nano fibers from rice straw, Cellulose, 26 (10), 5831–5849.

[20] Chakraborty, I., Rongpipi, S., Govindaraju, I., Rakesh, B., Mal, S.S., Gomez, E.W., Gomez, E.D., Kalita, R.D., Nath, Y., and Mazumder, N., 2022, An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose, Microsc. Res. Tech., 85 (5), 1990–2015.

[21] Puppala, N.V., Doddipatla, P., and Mohannath, G., 2023, Use of nanocellulose in the intracellular delivery of biological and non-biological drugs: A review, Cellulose, 30 (3), 1335–1354.

[22] Segal, L., Creely, J.J., Martin, A.E., and Conrad, C.M., 1959, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J., 29 (10), 786–794.

[23] Nelson, M.L., and O’Connor, R.T., 1964, Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II, J. Appl. Polym. Sci., 8 (3), 1325–1341.

[24] Wada, M., Okano, T., and Sugiyama, J., 2001, Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings, J. Wood Sci., 47 (2), 124–128.

[25] Hii, S.L., Lip, K.F., Loh, Y.T., and Wong, C.L., 2015, Statistical optimization of fermentable sugar extraction from the Malaysian brown alga Sargassum binderi, J. Appl. Phycol., 27 (5), 2089–2098.

[26] Nogueira, M.T., Chica, L.R., Yamashita, C., Nunes, N.S.S., Moraes, I.C.F., Branco, C.C.Z., and Branco, I.G., 2022, Optimal conditions for alkaline treatment of alginate extraction from the brown seaweed Sargassum cymosum C. Agardh by response surface methodology, Appl. Food Res., 2 (2), 100141.

[27] Nesic, A., De Bonis, M.V., Dal Poggetto, G., Ruocco, G., and Santagata, G., 2023, Microwave assisted extraction of raw alginate as a sustainable and cost-effective method to treat beach-accumulated Sargassum algae, Polymers, 15 (14), 2979.

[28] Yuanita, E., Pratama, J.N., Mustafa, J.H., and Chalid, M., 2015, Multistages preparation for microfibrillated celluloses based on Arenga pinnata “ijuk” fiber, Procedia Chem., 16, 608–615.

[29] Ben Sghaier, A.E.O., Chaabouni, Y., Msahli, S., and Sakli, F., 2012, Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber, Ind. Crops Prod., 36 (1), 257–266.

[30] Sundarrajan, P., Eswaran, P., Marimuthu, A., Subhadra, L.B., and Kannaiyan, P., 2012, One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles, Bull. Korean Chem. Soc., 33 (10), 3218–3224.

[31] Roziafanto, A.N., Lazuardi, D.R., Ghozali, M., Sofyan, N., and Chalid, M., 2023, Hydrothermal treatment of sorghum (Sorghum bicolor (L.) Moench) stalks for enhanced microfibrillated cellulose production, Mater. Res. Express, 10 (9), 095303.

[32] Nurhayati, N., Irianto, H.E., Riastuti, R., Pangesty, A.I., Nugraha, A.F., Todo, M., Chalid, M., and Jumahat, A., 2024, Extraction and characterization of micro-fibrillated cellulose from rice husk waste for biomedical purposes, Int. J. Technol., 15 (2), 291–319.

[33] López-Sosa, L.B., Alvarado-Flores, J.J., Corral-Huacuz, J.C., Aguilera-Mandujano, A., Rodríguez-Martínez, R.E., Guevara-Martínez, S.J., Alcaraz-Vera, J.V., Rutiaga-Quiñones, J.G., Zárate-Medina, J., Ávalos-Rodríguez, M.L., and Morales-Máximo, M., 2020, A prospective study of the exploitation of pelagic Sargassum spp. as a solid biofuel energy source, Appl. Sci., 10 (23), 8706.

[34] García-Rosales, G., Ordoñez-Regil, E., Ramírez Torres, J.J., López Monroy, J., Machain-Castillo, M.L., and Longoria-Gándara, L.C., 2011, Characterization of marine sediments using analytical techniques, J. Radioanal. Nucl. Chem., 289 (2), 407–415.

[35] Paniz, O.G., Pereira, C.M.P., Pacheco, B.S., Wolke, S.I., Maron, G.K., Mansilla, A., Colepicolo, P., Orlandi, M.O., Osorio, A.G., and Carreño, N.L.V., 2020, Cellulosic material obtained from Antarctic algae biomass, Cellulose, 27 (1), 113–126.

[36] Dalal, S.R., Hussein, M.H., El-Naggar, N.E.A., Mostafa, S.I., and Shaaban-Dessuuki, S.A., 2021, Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery, Sci. Rep., 11 (1), 16741.

[37] Irianto, H.E., Giyatmi, G., Fransiska, D., and Nuraelah, A., 2023, Physical and chemical characteristics of alginate extracted from Sargassum sp, IOP Conf. Ser.: Earth Environ. Sci., 1177 (1), 012029.

[38] Mahdi, Y.S., Mohammed, A.H., and Mohammed, A.K., 2019, Cellulose fibers dissolution in alkaline solution, Al-Khwarizmi Eng. J., 14 (2), 107–115.

[39] French, A.D., 2014, Idealized powder diffraction patterns for cellulose polymorphs, Cellulose, 21 (2), 885–896.

[40] Sahadat Hossain, M., and Ahmed, S., 2023, Crystallographic characterization of naturally occurring aragonite and calcite phase: Rietveld refinement, J. Saudi Chem. Soc., 27 (3), 101649.

[41] Romruen, O., Karbowiak, T., Tongdeesoontorn, W., Shiekh, K.A., and Rawdkuen, S., 2022, Extraction and characterization of cellulose from agricultural by-products of Chiang Rai province, Thailand, Polymers, 14 (9), 1830.

[42] Atiqah, M.S.N., Gopakumar, D.A., Owolabi, F.A.T., Pottathara, Y.B., Rizal, S., Aprilia, N.A.S., Hermawan, D., Paridah, M.T.T., Thomas, S., and Abdul Khalil, H.P.S., 2019, Extraction of cellulose nanofibers via eco-friendly supercritical carbon dioxide treatment followed by mild acid hydrolysis and the fabrication of cellulose nanopapers, Polymers, 11 (11), 1813.

[43] Thygesen, A., Fernando, D., Ståhl, K., Daniel, G., Mensah, M., and Meyer, A.S., 2021, Cell wall configuration and ultrastructure of cellulose crystals in green seaweeds, Cellulose, 28 (5), 2763–2778.

[44] Melo, A.R.A., Filho, J.C.D., Neto, R.P.C., Ferreira, W.S., Archanjo, B.S., Curti, R.V., and Tavares, M.I.B., 2020, Effect of ultra-turrax on nanocellulose produced by acid hydrolysis and modified by nano ZnO by sol-gel method, Mater. Sci. Appl., 11 (2), 150–166.

[45] Tonoli, G.H.D., Holtman, K.M., Glenn, G., Fonseca, A.S., Wood, D., Williams, T., Sa, V.A., Torres, L., Klamczynski, A., and Orts, W.J., 2016, Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing, Cellulose, 23 (2), 1239–1256.

[46] Chen, P., Yu, H., Liu, Y., Chen, W., Wang, X., and Ouyang, M., 2013, Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing, Cellulose, 20 (1), 149–157.

[47] Ray, U., Zhu, S., Pang, Z., and Li, T., 2021, Mechanics design in cellulose‐enabled high‐performance functional materials, Adv. Mater., 33 (28), 2002504.



DOI: https://doi.org/10.22146/ijc.104211

Article Metrics

Abstract views : 5062 | views : 2013


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.