Modification of Chitosan using Fe3O4 and Glucose and Its Application for Phenol Removal

Widya Twiny Rizki(1*), Siti Marwah Lestari(2), Vindi Annisa Rahmah(3), Rd Rahmat Dauli(4)
(1) Department of Pharmacy, Faculty of Health Sciences, Adiwangsa Jambi University, Jl. Sersan Muslim, RT 24, Thehok, Jambi 36138, Indonesia; Department of Chemistry, Faculty of Science and Technology, Universitas Jambi, Jl. Raya Jambi Km. 15, Muara Bulian, Mendalo Indah, Jambi 36361, Indonesia
(2) Department of Pharmacy, Faculty of Health Sciences, Adiwangsa Jambi University, Jl. Sersan Muslim, RT 24, Thehok, Jambi 36138, Indonesia
(3) Department of Pharmacy, Faculty of Health Sciences, Adiwangsa Jambi University, Jl. Sersan Muslim, RT 24, Thehok, Jambi 36138, Indonesia
(4) Department of Information System, Faculty of Engineering and Computer Science, Adiwangsa Jambi University, Jl. Sersan Muslim RT 24, Thehok, Jambi 36138, Indonesia
(*) Corresponding Author
Abstract
In this study, chitosan was modified with Fe3O4 and glucose to enhance its capacity and effectiveness in adsorbing phenol from organic waste. XRD analysis revealed distinct differences between unmodified chitosan and the Fe3O4/glucose-modified version, with the resulting nanocomposite showing a particle size of 17.21 nm. FTIR spectra exhibited new, sharper peaks at 531 and 544 cm−1, indicating interactions between chitosan and Fe3O4 via the nitrogen atom in the NH2 group. VSM characterization showed a saturation magnetization of 63.4 emu/g, confirming that the chitosan/Fe3O4/glucose nanocomposite is superparamagnetic. SEM analysis revealed an uneven, porous surface, while the morphology displayed dark Fe3O4 spots dispersed across a lighter chitosan matrix. The optimal adsorption condition was achieved at a contact time of 60 min, with an adsorption efficiency of 16.46%. In addition to reducing phenol content in wastewater, the modified nanocomposite also exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli. This multifunctional material offers a promising solution for wastewater treatment, targeting both organic pollutants and pathogenic bacteria to help address water pollution challenges.
Keywords
Full Text:
Full Text PDFReferences
[1] Tadić, V., Petrić, M., Uzelac, B., Milošević, S., Vujčić, Z., Stevanović, J., and Tadić, J., 2018, Phenol removal from solution using different varieties of lettuce (Lactuca sativa L.) – Part 1, Sci. Hortic., 231, 210–218.
[2] Raza, W., Lee, J., Raza, N., Luo, Y., Kim, K.H., and Yang, J., 2019, Removal of phenolic compounds from industrial wastewater based on membrane-based technologies, J. Ind. Eng. Chem., 71 (1), 1–18.
[3] Albedah, M.A., Hamoudi, M.R., Sadon, S.H., Oussama, E., and Le, Q.H., 2023, Study of phenol removal from wastewater petroleum industry using molecular dynamics method for two-dimensional adsorbent from the aqueous environment, Eng. Anal. Boundary Elem., 147, 69–75.
[4] Erattemparambil, K., Mohan, L., Gnanasundaram, N., and Krishnamoorthy, R., 2023, Insights into adsorption theory of phenol removal using a circulating fluidized bed system, Arabian J. Chem., 16 (6), 104750.
[5] Basuki, T.M., Indrawati, D.R., Nugroho, H.Y.S.H., Pramono, I.B., Setiawan, O., Nugroho, N.P., Nada, F.M.H., Nandini, R., Savitri, E., Adi, R.N., Purwanto, P., and Sartohadi, J., 2024, Water pollution of some major rivers in Indonesia: The status, institution, regulation, and recommendation for its mitigation, Pol. J. Environ. Stud., 33 (4), 3515–3530.
[6] Grace Pavithra, K., Sundar Rajan, P., Arun, J., Brindhadevi, K., Hoang Le, Q., and Pugazhendhi, A., 2023, Review on recent advancements in extraction, removal, and recovery of phenol from phenolic wastewater: Challenges and future outlook, Environ. Res., 237, 117005.
[7] Afsharnia, M., Saeidi, M., Zarei, A., Narooie, M.R., and Biglari, H., 2016, Phenol removal from aqueous environment by adsorption onto pomegranate peel carbon, Electron. Physician, 8 (11), 3248–3256.
[8] Yu, L., Gamliel, D.P., Markunas, B., and Valla, J.A., 2021, A promising solution for food waste: Preparing active carbons for phenol removal from water streams, ACS Omega, 6 (13), 8870–8883.
[9] Hameed, A.Z., Raj, S.A., Kandasamy, J., Baghdadi, M.A., and Shahzad, M.A., 2022, Chitosan: A sustainable material for multifarious applications, Polymers, 14 (12), 2335.
[10] Sharifi, M.J., Nouralishahi, A., Hallajisani, A., and Askari, M., 2021, Magnetic chitosan nanocomposites as adsorbents in industrial wastewater treatment: A brief review, Cellul. Chem. Technol., 55 (2), 185–205.
[11] Keshvardoostchokami, M., Majidi, M., Zamani, A., and Liu, B., 2021, Adsorption of phenol on environmentally friendly Fe3O4/chitosan/zeolitic imidazolate framework-8 nanocomposite: Optimization by experimental design methodology, J. Mol. Liq., 323, 15064.
[12] Francis, A.O., Zaini, M.A.A., Muhammad, I.M., Abdulsalam, S., and El-Nafaty, U.A., 2023, Physicochemical modification of chitosan adsorbent: A perspective, Biomass Convers. Biorefin., 13 (7), 5557–5575.
[13] Anisa, N., Dewi, R., Zulnazri, Z., Sulhatun, S., and Nurlaila, R., 2022, Pembuatan glukosa dari ampas tebu dengan proses hidrolisis, CEJS, 2 (5), 54–67.
[14] Amândio, M.S.T., Rocha, J.M.S., and Xavier, A.M.R.B., 2023, Enzymatic hydrolysis strategies for cellulosic sugars production to obtain bioethanol from Eucalyptus globulus bark, Fermentation, 9 (3), 241.
[15] Pohling, J., Dave, D., Liu, Y., and Murphy, W., 2022, Two-step demineralization of shrimp (Pandalus borealis) shells using citric acid: An environmentally friendly, safe and cost-effective alternative to the traditional approach, Green Chem., 24 (3), 1141–1151.
[16] Aridi, A.S., Yusof, Y.A., Chin, N.L., Ishak, N.A., Yusof, N.A., and Manaf, Y.N., 2021, Physicochemical properties of chitosan extracted from Leucaena leucocephala pods using deprotenization and decolorization steps, IOP Conf. Ser.: Earth Environ. Sci., 709 (1), 012038.
[17] Mukhayani, F., Kamiya, Y., Otomo, R., Kunarti, E.S., and Nuryono, N., 2024, Modification of chitosan-coated magnetic material with glycidyltrimethylammonium chloride and its application as heterogeneous base catalyst for levulinic acid esterification, Mater. Adv., 5 (9), 3838–3849.
[18] Ameram, N., Muhammad, S., Nik Yusof, N.A.A., Ishak, S., Ali, A., Shoparwe, N.F., and Ter, T.P., 2019, Chemical composition in sugarcane bagasse: Delignification with sodium hydroxide, Malays. J. Fundam. Appl. Sci., 15 (2), 232–236.
[19] Santoso, J., Adiputra, K.C., Soedirga, L.C., and Tarman, K., 2020, Effect of acetic acid hydrolysis on the characteristics of water soluble chitosan, IOP Conf. Ser.: Earth Environ. Sci., 414, 012021.
[20] Alfredo Reyes Villegas, V., Isaías De León Ramírez, J., Hernandez Guevara, E., Perez Sicairos, S., Angelica Hurtado Ayala, L., and Landeros Sanchez, B., 2020, Synthesis and characterization of magnetite nanoparticles for photocatalysis of nitrobenzene, J. Saudi Chem. Soc., 24 (2), 223–235.
[21] Pietrzyk, P., Phuong, N.T., Olusegun, S.J., Hong Nam, N., Thanh, D.T.M., Giersig, M., Krysiński, P., and Osial, M., 2022, Titan yellow and Congo red removal with superparamagnetic iron-oxide based nanoparticles doped with zinc, Magnetochemistry, 8 (8), 91.
[22] Ayodele, O., Okoronkwo, A.E., Oluwasina, O.O., and Abe, T.O., 2018, Utilization of blue crab shells for the synthesis of chitosan nanoparticles and their characterization, Songklanakarin J. Sci. Technol., 40 (5), 1043–1047.
[23] Asgari, E., Sheikhmohammadi, A., and Yeganeh, J., 2020, Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies, Int. J. Biol. Macromol., 164, 694–706.
[24] Covaliu, C.I., Matei, E., Stoian, O., and Paraschiv, G., 2020, Magnetic nanocomposite material containing chitosan polymer used in wastewater depollution processes, Mater. Plast., 57 (4), 70–76.
[25] Wang, F., Liu, J., Wang, X., Kong, J., and Qiu, S., 2012, Synthesis of hollow Fe3O4 at ZnO at anatase TiO2 core-shell structured spheres, Ceram. Int., 38 (8), 6899–6902.
[26] Darjito, D., Purwonugroho, D., and Ningsih, R., 2014, The adsorption of Cr(IV) ions using chitosan-alumina adsorbent, J. Pure Appl. Chem. Res., 3 (2), 53–61.
[27] Prayoga, A., Hasibuan, P.A.Z., and Yuandani, Y., 2021, Antibacterial activity of patch silver nanoparticles and chitosan with cellulose nanofibers carriers against Staphylococcus aureus and Escherichia coli, Indones. J. Pharm. Clin. Res., 4 (2), 15–21.
[28] Pascual, A.M.D, 2020, Antibacterial action of nanoparticle loaded nanocomposites based on graphene and its derivatives: A mini-review, Int. J. Mol. Sci., 21 (10), 3563.

Article Metrics


Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.