Molecular Docking Study of Eugenol and Its Derivatives as Potential Anti-Ischemia Agents for Angiotensin Converting Enzyme (ACE) Inhibition

https://doi.org/10.22146/ijc.101791

Susy Yunita Prabawati(1), Karisma Triatmaja(2), Priyagung Dhemi Widiakongko(3*)

(1) Chemistry Study Program, Faculty of Science and Technology, UIN Sunan Kalijaga, Jl. Laksda Adisucipto No. 1, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Chemistry Study Program, Faculty of Science and Technology, UIN Sunan Kalijaga, Jl. Laksda Adisucipto No. 1, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Mortality due to ischemic stroke has increased significantly, especially during the COVID-19 pandemic. Preventive measures are urgently needed to reduce the severity of ischemic stroke, which is mainly caused by blood vessel blockage due to increased secretion of angiotensin II (ANG II) by angiotensin-converting enzyme (ACE). This study investigated the potential of eugenol and its derivatives as ACE inhibitors using molecular docking, an in silico approach for drug discovery by using PLANTS software. The results showed that several eugenol derivatives, including (E)-1-(2-(4-allylphenoxy)acetyl)-4-cinnamoylthiosemicarbazide, exhibited potent ACE inhibition, with docking scores comparable to the native ligand (lisinopril) and superior to several commercial drugs. Physicochemical evaluation revealed that derivatives such as 5a, 5b, 7, and 9a had favorable molecular weight, total polar surface area, and lipophilicity (log P), thereby enhancing their permeability and bioavailability. Drug-likeness analysis confirmed that the compound meets several criteria, including Lipinski, Pfizer, and Golden Triangle rules, highlighting its potential safety and efficacy. Key binding interactions, including hydrogen bonds, hydrophobic interactions, and electrostatic interactions in the ACE active site, further support its candidacy as an ACE inhibitor. These findings suggest that eugenol derivatives are promising candidates for the development of therapies targeting ischemic stroke through ACE inhibition.


Keywords


ACE inhibitor; antioxidant; eugenol; ischemia; molecular docking

Full Text:

Full Text PDF


References

[1] Merkler, A.E., Parikh, N.S., Mir, S., Gupta, A., Kamel, H., Lin, E., Lantos, J., Schenck, E.J., Goyal, P., Bruce, S.S., Kahan, J., Lansdale, K.N., Lemoss, N.M., Murthy, S.B., Stieg, P.E., Fink, M.E., Iadecola, C., Segal, A.Z., Cusick, M., Campion, T.R., Diaz, I., Zhang, C., and Navi, B.B., 2020, Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza, JAMA Neurol., 77 (11), 1366–1372.

[2] Qureshi, A.I., Baskett, W.I., Huang, W., Shyu, D., Myers, D., Raju, M., Lobanova, I., Suri, M.F.K., Naqvi, S.H., French, B.R., Siddiq, F., Gomez, C.R., and Shyu, C.R., 2021, Acute ischemic stroke and COVID-19: An analysis of 27 676 patients, Stroke, 52 (3), 905–912.

[3] Zhang, M., Sun, J., Wang, C., Su, L., Chen, J., Wang, Y., Sun, X., Gong, Y., and Yu, S., 2024, Spectrum of retinal microvascular ischemia in patients with COVID-19 based on multimodal imaging, Heliyon, 10 (19), e38535.

[4] Xu, H., Yu, S., Lin, C., Dong, D., Xiao, J., Ye, Y., and Wang, M., 2024, Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury, Phytomedicine, 126, 155409.

[5] Patel, V.B., Zhong, J.C., Grant, M.B., and Oudit, G.Y., 2016, Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure, Circ. Res., 118 (8), 1313–1326.

[6] Xie, J., Chen, S., Huan, P., Wang, S., and Zhuang, Y., 2024, A novel angiotensin I-converting enzyme inhibitory peptide from walnut (Juglans sigillata) protein hydrolysates and its evaluation in Ang II-induced HUVECs and hypertensive rats, Int. J. Biol. Macromol., 266, 131152.

[7] Peng, H., Carretero, O.A., Vuljaj, N., Liao, T.D., Motivala, A., Peterson, E.L., and Rhaleb, N.E., 2005, Angiotensin-converting enzyme inhibitors: A new mechanism of action, Circulation, 112 (16), 2436–2445.

[8] García-Mora, P., Martín-Martínez, M., Angeles Bonache, M., González-Múniz, R., Peñas, E., Frias, J., and Martinez-Villaluenga, C., 2017, Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities, Food Chem., 221, 464–472.

[9] Mirzaei, M., Mirdamadi, S., Ehsani, M.R., and Aminlari, M., 2018, Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking, J. Food Drug Anal., 26 (2), 696–705.

[10] da Silva, F.F.M., Monte, F.J.Q., de Lemos, T.L.G., do Nascimento, P.G.G., de Medeiros Costa, A.K., and de Paiva, L.M.M., 2018, Eugenol derivatives: Synthesis, characterization, and evaluation of antibacterial and antioxidant activities, Chem. Cent. J., 12 (1), 34.

[11] Lisdiana, L., and Nuraini, N., 2018, Potensi eugenol sebagai agen proteksi kerusakan struktur paru akibat paparan asap rokok, J. MIPA, 41 (2), 87–95.

[12] Julianus Sohilait, H., and Kainama, H., 2019, Free radical scavenging activity of essential oil of Eugenia caryophylata from Amboina Island and derivatives of eugenol, Open Chem., 17 (1), 422–428.

[13] Eleleemy, M., Amin, B., Nasr, M., and Sammour, O., 2020, A succinct review on the therapeutic potential and delivery systems of eugenol, Arch. Pharm. Sci. Ain Shams Univ., 4 (2), 290–311.

[14] Dhiman, P., Malik, N., and Khatkar, A., 2019, Lead optimization for promising monoamine oxidase inhibitor from eugenol for the treatment of neurological disorder: Synthesis and in silico based study, BMC Chem., 13 (1), 38.

[15] Fen, W., Jin, L., Xie, Q., Huang, L., Jiang, Z., Ji, Y., Li, C., Yang, L., and Wang, D., 2018, Eugenol protects the transplanted heart against ischemia/reperfusion injury in rats by inhibiting the inflammatory response and apoptosis, Exp. Ther. Med., 16 (4), 3464–3470.

[16] Wang, M., Zhang, J., Zhang, J., Sun, K., Li, Q., Kuang, B., Wang, M.M.Z., Hou, S., and Gong, N., 2021, Methyl eugenol attenuates liver ischemia reperfusion injury via activating PI3K/Akt signaling, Int. Immunopharmacol., 99, 108023.

[17] Ibrahim, A.A., Sulliman, E.A., and Ibrahim, M.A., 2024, Molecular docking interaction of medicines binding to COVID-19 proteins, J. Turk. Chem. Soc., Sect. A, 11 (1), 261–268.

[18] Yang, Y., He, Y., Wei, X., Wan, H., Ding, Z., Yang, J., and Zhou, H., 2022, Network pharmacology and molecular docking-based mechanism study to reveal the protective effect of salvianolic acid C in a rat model of ischemic stroke, Front. Pharmacol., 12, 799448.

[19] Luo, Y., Chen, P., Yang, L., and Duan, X., 2022, Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Gastrodia elata Blume in the treatment of ischemic stroke, Exp. Ther. Med., 24 (6), 742.

[20] Liu, K., Tao, X., Su, J., Li, F., Mu, F., Zhao, S., Lu, X., Li, J., Chen, S., Dong, T., Duan, J., Wei, P., and Xi, M., 2021, Network pharmacology and molecular docking reveal the effective substances and active mechanisms of Dalbergia odoriferain protecting against ischemic stroke, PLoS One, 16 (9), e0255736.

[21] Pantsar, T., and Poso, A., 2018, Binding affinity via docking: Fact and fiction, Molecules, 23 (8), 1899.

[22] Korb, O., Stützle, T., and Exner, T.E., 2006, “PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design” in Ant Colony Optimization and Swarm Intelligence, Eds. Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., and Stützle, T., Springer, Berlin, Heidelberg, 247–258.

[23] Gorgulla, C., Çınaroğlu, S.S., Fischer, P.D., Fackeldey, K., Wagner, G., and Arthanari, H., 2021, VirtualFlow Ants—Ultra-large virtual screenings with artificial intelligence driven docking algorithm based on ant colony optimization, Int. J. Mol. Sci., 22 (11), 5807.

[24] Arianingrum, R., Hermawan, A., Purnomo, H., Dewi, D., and Meiyanto, E., 2019, Molecular docking studies of a chalcone derivative compound p-hydroxy-m-methoxychalcone with tyrosine kinase receptors, Indian J. Public Health Res. Dev., 10 (7), 1219–1224.

[25] Krieger, E., and Vriend, G., 2014, YASARA View—molecular graphics for all devices—from smartphones to workstations, Bioinformatics, 30 (20), 2981–2982.

[26] Exner, T.E., Korb, O., and ten Brink, T., 2009, New and improved features of the docking software PLANTS, Chem. Cent. J., 3 (Suppl. 1), P16.

[27] BIOVIA, Dassault Systèmes, 2016, Discovery Studio Visualizer ver. 20, Dassault Systèmes, San Diego, US.

[28] Natesh, R., Schwager, S.L.U., Sturrock, E.D., and Acharya, K.R., 2003, Crystal structure of the human angiotensin-converting enzyme–lisinopril complex, Nature, 421 (6922), 551–554.

[29] Furberg, C.D., and Pitt, B., 2001, Are all angiotensin-converting enzyme inhibitors interchangeable?, J. Am. Coll. Cardiol., 37 (5), 1456–1460.

[30] Lestari, T., 2015, Studi interaksi senyawa turunan 1,3-dibenzoiltiourea sebagai ribonukleotida reduktase inhibitor, JFI, 7 (3), 163–169.

[31] Susanti, N.M.P., Saputra, D.P.D., Hendrayati, P.L., Parahyangan, I.P.D.N., and Swandari, I.A.D.G., 2018, Molecular docking sianidin dan peonidin sebagai antiinflamasi pada aterosklerosis secara in silico, JFU, 7 (1), 28–33.

[32] Shafiq, N., Arshad, M., Ali, A., Rida, F., Mohany, M., Arshad, U., Umar, M., and Milošević, M., 2024, Integrated computational modeling and in-silico validation of flavonoids-Alliuocide G and Alliuocide A as therapeutic agents for their multi-target potential: Combination of molecular docking, MM-GBSA, ADMET and DFT analysis, S. Afr. J. Bot., 169, 276–300.

[33] Auwal, S.M., Abidin, N.Z., Zarei, M., Tan, C.P., and Saari, N., 2019, Identification, structure-activity relationship and in silico molecular docking analyses of five novel angiotensin I-converting enzyme (ACE)-inhibitory peptides from stone fish (Actinopyga lecanora) hydrolysates, PLoS One, 14 (5), e0197644.

[34] Khayrani, A.C., Irdiani, R., Aditama, R., Pratami, D.K., Lischer, K., Ansari, M.J., Chinnathambi, A., Alharbi, S.A., Almoallim, H.S., and Sahlan, M., 2021, Evaluating the potency of Sulawesi propolis compounds as ACE-2 inhibitors through molecular docking for COVID-19 drug discovery preliminary study, J. King Saud Univ., Sci., 33 (2), 101297.

[35] Meena, J., Archana, D., and Santhy, K.S., 2018, In silico analysis of Cyclea peltata (Lam.) Hook.f. & Thomson root extract for docking studies of the compound β-estradiol, Indian J. Tradit. Knowl., 17 (1), 162–167.

[36] Chamata, Y., Watson, K.A., and Jauregi, P., 2020, Whey-derived peptides interactions with ACE by molecular docking as a potential predictive tool of natural ACE inhibitors, Int. J. Mol. Sci., 21 (3), 864.

[37] Wu, Q., Jia, J., Yan, H., Du, J., and Gui, Z., 2015, A novel angiotensin-І converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study, Peptides, 68, 17–24.

[38] Linelejan, B., Umboh, O., and Wantania, F.E.N., 2021, Pengaruh penggunaan angiotensin converting enzyme inhibitor (ACEI) dan angiotensin receptor blocker (ARB) pada pasien coronavirus disease 2019 (COVID-19) dengan hipertensi, e-CliniC, 9 (1), 104–109.

[39] Mosquera-Sulbarán, J., Ryder, E., Vargas, R., and Pedreáñez, A., 2022, Angiotensin II and human obesity. A narrative review of the pathogenesis, Invest. Clin., 63 (4), 435–453.

[40] Majewski, M., Ruiz-Carmona, S., and Barril, X., 2019, An investigation of structural stability in protein-ligand complexes reveals the balance between order and disorder, Commun. Chem., 2 (1), 110.

[41] Santoso, B., 2017, Pengaruh volume gridbox pada docking senyawa dalam stelechocarpus burahol terhadap protein homolog antiinflamasi TRPV1, Proceeding 6th University Research Colloquium 2017, Universitas Muhammadiyah Magelang, 9 September 2017, 321–328.

[42] Ferenczy, G.G., and Kellermayer, M., 2022, Contribution of hydrophobic interactions to protein mechanical stability, Comput. Struct. Biotechnol. J., 20, 1946–1956.

[43] Duan, G., Ji, C., and Zhang, J.Z.H., 2020, Developing an effective polarizable bond method for small molecules with application to optimized molecular docking, RSC Adv., 10 (26), 15530–15540.

[44] Ahmad, I., Kuznetsov, A.E., Pirzada, A.S., Alsharif, K.F., Daglia, M., and Khan, H., 2023, Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches, Front. Chem., 11, 1145974.

[45] Ghorab, M.A., Lieu, D., and Craig, E.A., 2024, Use of the threshold of toxicological concern (TTC) approach as an alternative tool for regulatory purposes: A case study with an inert ingredient used in pesticide products, Chemosphere, 364, 143122.

[46] Zhai, J., Man, V.H., Ji, B., Cai, L., and Wang, J., 2023, Comparison and summary of in silico prediction tools for CYP450-mediated drug metabolism, Drug Discovery Today, 28 (10), 103728.



DOI: https://doi.org/10.22146/ijc.101791

Article Metrics

Abstract views : 469 | views : 243


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.