Biomass Waste Incorporation in La0.6Sr0.4Co0.2Fe0.8O3-α˗Ba(Ce0.6Zr0.4)0.9Y0.1O3-δ Composite Cathode: Effects on Microstructural and Physical Properties

https://doi.org/10.22146/ijc.100764

Ismariza Ismail(1*), Nur Ashafieka Abdullah(2), Norizah Abd Karim(3), Shazlina Johari(4), Muhammad Mahyiddin Ramli(5)

(1) Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, Malaysia; Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Jalan Kangar-Alor Setar, Kangar 0100, Perlis, Malaysia
(2) Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, Malaysia
(3) Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Kampus Pauh Putra, Arau 02600, Perlis, Malaysia; Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Jalan Kangar-Alor Setar, Kangar 0100, Perlis, Malaysia
(4) Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Kampus Pauh Putra, Arau 02600, Perlis, Malaysia; Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Jalan Kangar-Alor Setar, Kangar 0100, Perlis, Malaysia
(5) Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Kampus Pauh Putra, Arau 02600, Perlis, Malaysia; Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Jalan Kangar-Alor Setar, Kangar 0100, Perlis, Malaysia
(*) Corresponding Author

Abstract


This study explores the incorporation of rice straw as a pore-forming agent in fabricating the La0.6Sr0.4Co0.2Fe0.8O3-α˗Ba(Ce0.6Zr0.4)0.9Y0.1O3–δ (LSCF-BCZY) composite cathode, focusing on its microstructural and physical properties. Conventional cathode materials often face challenges in balancing porosity and structural stability, with synthetic pore formers posing environmental and consistency concerns. To address these issues, rice straw was introduced into the cathode matrix at varying weight percentages, and the composites were sintered at 1000 °C. The addition of rice straw was evaluated using X-ray diffraction, scanning electron microscopy, and densitometry. The results revealed that increasing rice straw content significantly enhanced cathode porosity, rising from 5.53 to 27.74%, with a concomitant reduction in density from 1.33 to 0.93 g/cm3, while maintaining the crystalline stability of the LSCF-BCZY composite. Enhanced porosity suggests improved reactant diffusion to active sites, potentially benefiting the cell's performance in future energy applications. This work highlights the potential of agricultural waste as a sustainable and effective alternative to synthetic pore formers in cathode fabrication.


Keywords


biomass waste; pore former; composite cathode; microstructural properties; protonic ceramic fuel cells

Full Text:

Full Text PDF


References

[1] Mather, G.C., Muñoz-Gil, D., Zamudio-García, J., Porras-Vázquez, J.M., Marrero-López, D., and Pérez-Coll, D., 2021, Perspectives on cathodes for protonic ceramic fuel cells, Appl. Sci., 11 (12), 5363.

[2] Dhanasekaran, A., Subramanian, Y., Omeiza, L.A., Raj, V., Yassin, H., Ali, S.A.M., and Azad, A.K., 2023, Computational fluid dynamics for protonic ceramic fuel cell stack modeling: A brief review, Energies, 16 (1), 208.

[3] Wang, M., Su, C., Zhu, Z., Wang, H., and Ge, L., 2022, Composite cathodes for protonic ceramic fuel cells: Rationales and materials, Composites, Part B, 238, 109881.

[4] Chen, Y., Nie, X., Wang, B., Xia, C., Dong, W., Wang, X., Wang, H., and Zhu, B., 2020, Tuning La0.6Sr0.4Co0.2Fe0.8O3-δ perovskite cathode as functional electrolytes for advanced low-temperature SOFCs, Catal. Today, 355, 295–303.

[5] Ismail, I., Osman, N., and Md Jani, A.M., 2016, Tailoring the microstructure of La0.6Sr0.4Co0.2Fe0.8O3−α cathode material: the role of dispersing agent, J. Sol-Gel Sci. Technol., 80 (2), 259–266.

[6] Duan, C., Huang, J., Sullivan, N., and O'Hayre, R., 2020, Proton-conducting oxides for energy conversion and storage, Appl. Phys. Rev., 7 (1), 011314.

[7] Lee, S., Park, S., Wee, S., Baek, H.W., and Shin, D., 2018, One-dimensional structured La0.6Sr0.4Co0.2Fe0.8O3−δ - BaCe0.5Zr0.35Y0.15O3−δ composite cathode for protonic ceramic fuel cells, Solid State Ionics, 320, 347–352.

[8] Shah, N., Zhu, T., Feng, D., Xu, X., Liang, F., Wang, H., Zhu, Z., and Ge, L., 2024, Fine-tuning thermal expansion characteristics of solid oxide fuel cell cathode via composite cathode fabrication, J. Power Sources, 616, 235143.

[9] Ismail, I., Osman, N., and Md Jani, A.M., 2020, La0.6Sr0.4Co0.2Fe0.8O3−δ powder: A simple microstructure modification strategy for enhanced cathode electrochemical performance, J. Sol-Gel Sci. Technol., 94 (2), 435–447.

[10] Dele-Afolabi, T.T., Hanim, M.A.A., Norkhairunnisa, M., Sobri, S., and Calin, R., 2017, Research trend in the development of macroporous ceramic components by pore forming additives from natural organic matters: A short review, Ceram. Int., 43 (2), 1633–1649.

[11] Fasquelle, D., Chi, Z., and Belakry, S., 2023, Impregnation of gadolinium-doped ceria backbone electrodes modified by addition of pore-formers for SOFC application, J. Solid State Electrochem., 27 (3), 695–703.

[12] Kamilya, P., Ali, O.A., Kumar, S., Panda, S.K., and Pattnaik, R., 2023, “Prospects of rice straw for sustainable production of biofuels: Current trends and challenges” in Green Approach to Alternative Fuel for a Sustainable Future, Elsevier, Amsterdam, Netherlands, 35–44.

[13] Singh, R., and Patel, M., 2022, Effective utilization of rice straw in value-added by-products: A systematic review of state of art and future perspectives, Biomass Bioenergy, 159, 106411.

[14] Hu, L., Zhou, D., Zhu, X., Wang, N., Bai, J., Gong, H., Zhang, Y., Chen, Y., Yan, W., and Zhu, Q., 2024, A high-performance composite cathode based on thermal expansion complementation for SOFC, Fuel, 362, 130864.

[15] Yu, Z., Fang, S., Lin, Y., Liao, Y., and Ma, X., 2015, Investigation of rice straw combustion by using thermogravimetric analysis, Energy Procedia, 75, 144–149.

[16] Bhattacharyya, P., Bhaduri, D., Adak, T., Munda, S., Satapathy, B.S., Dash, P.K., Padhy, S.R., Pattanayak, A., Routray, S., Chakraborti, M., Baig, M.J., Mukherjee, A.K., Nayak, A.K., and Pathak, H., 2020, Characterization of rice straw from major cultivars for best alternative industrial uses to cut off the menace of straw burning, Ind. Crops Prod., 143, 111919.

[17] Sakhiya, A.K., Anand, A., Vijay, V.K., and Kaushal, P., 2021, Thermal decomposition of rice straw from rice basin of India to improve energy-pollution nexus: Kinetic modeling and thermodynamic analysis, Energy Nexus, 4, 100026.

[18] Agustin, M.B., Ahmmad, B., Alonzo, S.M.M., and Patriana, F.M., 2014, Bioplastic based on starch and cellulose nanocrystals from rice straw, J. Reinf. Plast. Compos., 33 (24), 2205–2213.

[19] Amrutha, S.R., Suja, N.R., and Menon, S., 2023, “Morphological Analysis of Biomass” in Handbook of Biomass, Eds. Thomas, S., Hosur, M., Pasquini, D., and Jose Chirayil, C., Springer Nature Singapore, Singapore, 1–31.

[20] Leth-Espensen, A., Li, T., Glarborg, P., Løvås, T., and Jensen, P.A., 2020, The influence of size and morphology on devolatilization of biomass particles, Fuel, 264, 116755.

[21] Osman, N., Ismail, I., Samat, A.A., and Md Jani, A.M., 2016, Reactivity study of LaSrCoFeO3 - Ba(Ce,Zr)O3 composite cathode material, Mater. Sci. Forum, 846, 58–62.

[22] Mingyi, L., Bo, Y., Jingming, X., and Jing, C., 2010, Influence of pore formers on physical properties and microstructures of supporting cathodes of solid oxide electrolysis cells, Int. J. Hydrogen Energy, 35 (7), 2670–2674.

[23] Fu, M., Li, K., Yang, Y., Zeng, Q., Zeng, L., and Tao, Z., 2022, Fabrication and study of LaNi0.6Fe0.4O3-δ and Sm0.5Sr0.5CoO3-δ composite cathode for proton-conducting solid oxide fuel cells, Sep. Purif. Technol., 287, 120581.

[24] Taer, E., Susanti, Y., Awitdrus, A., Sugianto, S., Taslim, R., Setiadi, R.N., Bahri, S., Agustino, A., Dewi, P., and Kurniasih, B., 2018, The effect of CO2 activation temperature on the physical and electrochemical properties of activated carbon monolith from banana stem waste, AIP Conf. Proc., 1927 (1), 030016.

[25] Ab Rahman, M., Othman, M.H.D., Fansuri, H., Harun, Z., Jamil, S.M., Omar, A.F., Rahman, M.A., Jaafar, J., and Ismail, A.F., 2021, Effect of sintering temperature on perovskite-based hollow fiber as a substrate for cathode-supported micro-tubular solid oxide fuel cell, J. Aust. Ceram. Soc., 57 (4), 1199–1208.

[26] Li, Z., He, Q., Xia, L., Xu, Q., Cheng, C., Wang, J., and Ni, M., 2022, Effects of cathode thickness and microstructural properties on the performance of protonic ceramic fuel cell (PCFC): A 3D modelling study, Int. J. Hydrogen Energy, 47 (6), 4047–4061.



DOI: https://doi.org/10.22146/ijc.100764

Article Metrics

Abstract views : 1379 | views : 891


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.