Review: Prevention and Reduction of Mycotoxin by Antagonistic Microorganism

https://doi.org/10.22146/ifnp.39607

Winiati Pudji Rahayu(1*)

(1) Bogor Agricultural University
(*) Corresponding Author

Abstract


Mycotoxin is widely known as one cause of foodborne disease, produced by toxigenic fungi. Any country should be aware about this high risk potency by knowing the mycotoxin, affected commodities, fungal sources, and toxicity effect to human or animal. Controlling mycotoxin could be done by physic, chemical, and biological methods. The microbial characteristic used for biological agent should be evaluated including the inability to produce toxic substance, tendency to multiply, colonize, survive, safety, and applicability to the environment. Studies related to mycotoxin biocontrol by using antagonistic microorganism can be focused on (1) the effect to the mycotoxin, (2) the growth of microorganism, or (3) the application to food both raw material and processed products. Consideration to combine more than one species of microorganism instead of a single species also has been taken to achieve more effective result.  For example, S. cerevisiae has been used together with LAB to control certain mycotoxin. Further studies are needed to develop the possibility of other biological agents and the effect of their application, which in the next have the potency as manufacturing products.


Keywords


antagonistic microorganism, biological agent, combination, microbial characteristic, mycotoxin biocontrol, potency

Full Text:

PDF


References

Abbas, H.K., Weaver, M.A., Horn, B.W., Carbone, I., Monacell, J.T., and Shier, W.T. 2011. Selection of Aspergillus flavus isolates for biological control of aflatoxins in corn. Toxin Reviews. 30(2-3):59-70. https://doi.org/10.3109/15569543.2011.591539 Armando, M.R., Dogi, C.A., Poloni, V., Rosa, C.A.R., Dalcero, A.M., and Cavaglieri, L.R. 2013. In vitro study on the effect of Saccharomyces cerevisiae strains on growth and mycotoxin production by Aspergillus carbonarius and Fusarium graminearum. International Journal of Food Microbiology. 161:182-188. http: //dx. doi.org /10.1016 / j.ijfoodmicro . 2012.11.016 Baker, KF. 1987. Evolving concepts of biological control of plant pathogens. Annual Review of Phytopathology. 25:67-85. http:// doi:10.1146/annurev.py.25.090187.00043 Bloom, B., Ehlers, R., Haukeland-Salinas, S., Hoddanen, H., and Jung, K. 2003. Biological control agents: Safety and regulatory policy. BioControl. 48(4):477-484. https://doi.Org/ 10 .1023/A:1024718225391 Bull, CT., Shetty, KG., and Subbarao, KV. 2002. Interactions between myxobacteria, plant pathogenic fungi and biocontrol agents. Plant Disease. 86:889-896. http:// dx.doi.org /10 .1094/PDIS.2002.86.8.889 Cao, J., Zhang, H., yang, Q., Ren, R. 2013. Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples. International Journal of Food Microbiology. 162:167-173. http://doi:10.1016/j.ijfoodmicro.2013.01.007 Corassin, C.H., Bovo, F., Rosim, R.E., Oliveira, C.A.F. 2013. Efficiency of Saccharomyces cerevisiae and lactic acid bacteria strains to bind aflatoxin M1 in UHT skim milk. Food Control. 31:80-83. Dalié, D., Pinson-Gadais, L., Atanasova-Penichon, V., Marchegay, G., Barreau, C., Deschamps, A., and Richard-Forget, F. 2012. Impact of Pediococcus pentosaceus strain L006 and its metabolites on fumonisin biosynthesis by Fusarium verticillioides. Food Control. 23:405-411. http://DOI: 10.1016/j.foodcont.2011.08.008 De Curtis, F., de Felice, D.V., Ianiri, G., De Cicco, V., and Castoria, R. 2012. Environmental factors affect the activity of biocontrol agents against ochratoxigenic Aspergillus carbonarius on wine grape. International Journal of Food Microbiology. 159:17-24. https://doi.org/10.1016/j.ijfoodmicro.2012.07.023. De Felice, D. V., Solfrizzo, M., De Curtis, F., Lima, G., Visconti, A., and Castoria, R. 2008. Strains of Aureobasidium pullulans can lower ochratoxin A contamination in wine grapes. Postharvest pathology and Mycotoxins. 98(12):1261-1270. https://apsjournals. Apsnet .org /doi /pdf/10.1094/PHYTO-98-12-1261 Dorner, JW. 2009. Biological control of aflatoxin contamination in corn using a nontoxigenic strain of Aspergillus flavus. Journal of Food Protection. 72(4):801-804. https:// pubag .nal .usda .gov/download/29031/PDF Droby, S., Wisniewski, M., Macarisin, D., and Wilson, C. 2009. Review: Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology. 52:137-145. https://naldc.nal.usda.gov/download/28805/PDF Fareid, MA. 2011. Biocontrol of Fusarium moulds and fumonisin B1 production. World Rural Observations. 3(3):53-61. Fuchs, S., Sontag, G., Stidl, R., Ehrlich, V., Kundi, M., and Knasmuller, S. 2008. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food and Chemical Toxicology. 46:1398-1407. http://doi:10.1016/j.fct.2007.10.008. Gil-Serna, J., Patiño, B., Cortés, L., González-Jaén, MT., and Vázquez, C. 2011. Mechanisms involved in reduction of ochratoxin A produced by Aspergillus westerdijkiae using Debaryomyces hansenii CYC 1244. International Journal of Food Microbiology. 151:113-118. https://doi.org/10.1016/j.ijfoodmicro.2011.08.012 Guo, C., Yue, T., Yuan, Y., Wang, Z., Guo, Y., Wang, L., and Li, Z. 2013. Biosorption of patulin from apple juice by caustic treated waste cider yeast biomass. Food Control. 32:99-104. https://doi:10.1016/j.foodcont.2012.11.009 Kapetanakou, A.E., Kollias, J.N., Drosinos, E.H., and Skandamis, P.N. 2012. Inhibition of A. carbonarius growth and reduction of ochratoxin A by bacteria and yeast composites of technological importance in culture media and beverages. International Journal of Food Microbiology. 152:91-99. https://doi.org/10.1016/j.ijfoodmicro.2011.09.010 Kimura, N. and Hirano, S. 1988. Inhibitory strains of Bacillus subtilis for growth and aflatoxin production of aflatoxin production of aflatoxigenic fungi. Agricultural and Biological Chemistry. 52(5):1173-1179. https://DOI: 10.1271/bbb1961.52.1173 Kong, Q., Shan, S., Liu, Q., Wang, X., and Yu, F. 2010. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. International Journal of Food Microbiology. 139:31-35. https://doi.org/10.1016/j.ijfoodmicro.2010.01.036 Lima, G., Castoria, R., De Curtis, F., Raiola, A., Ritieni, A., and De Cicco, V. 2011. Integrated control of blue mould using new fungicides and biocontrol yeasts lowers levels of fungicide residues and patulin contamination in apples. Postharvest Biology and Technology. 60:164-172. https://doi:10.1016/j.postharvbio.2010.12.010. Molnar, O., Schatzmayr, G., Fuchs, E., and Prillinger, H. 2004. Trichosporon mycotoxinivorans sp nov., a new yeast species useful in biological detoxification of various mycotoxins. Systematic and Applied Microbiology. 27(6):661–671. https: //doi .org /10 .1078 /0723202042369947 Pereira, P., Ibánez, SG., Agostini, E., and Etcheverry, M. 2011. Effects of maize inoculation with Fusarium verticillioides and with two bacterial biocontrol agents on seedlings growth and antioxidative enzymatic activities. Applied Soil Ecology. 51:52-59. DOI: 10.1016/j.apsoil.2011.08.007. Pereira, P., Nesci, A., Castillo, C., and Etcheverry, M. 2010. Impact of bacterial biological control agents on fumonisin B1 content and Fusarium verticillioides infection of field-grown maize. Biological Control. 53:258-266. doi: 10.1016/j.biocontrol.2010.02.001 Pizzolitto, RP., Salvano, MA.,and Dalcero, AM. 2012. Analysis of fumonisin B1 removal by microorganisms in co-occurrence with aflatoxin B1 and the nature of the binding process. International Journal of Food Microbiology. 156:214-221. https:// doi:10 .1016 /j. ijfood micro.2012.03.024 Ponsone, ML., Chiotta, ML., Combina, M., Dalcero, A., and Chulze, S. 2011. Biocontrol as a strategy to reduce the impact of ochratoxin A and Aspergillus section Nigri in grapes. International Journal of Food Microbiology. 151:70-77. https: //doi .org /10 .1016 /j.ij food micro.2011.08.005 Shams-Ghahfarokhi, M., Kalantari, S., and Razzaghi-Abyaneh, M. 2013. Terrestrial bacteria from agricultural soils: versatile weapons against aflatoxigenic fungi. In “Aflatoxin-recent advances and future prospects”. ed. M. Razzaghi-Abyaneh, pp. 23-39. Intech, Rijeka. https://doi:10.5772/45918 Sharma, RR., Singh, D., and Singh, R. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control. 50:205-221. https://doi.org/10.1016/j.biocontrol.2009.05.001 Spadaro, D., Lorè, A., Garibaldi, A., and Gullino, ML. 2013. A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biology and Technology. 75:1-8. https://doi.org/10.1016/j.postharvbio.2012.08.001 Tolaini, V., Zjalic, S., Reverberi, M., Fanelli, C., Fabbri, A.A., Del Fiore, A., De Rossi, P., and Ricelli, A. 2010. Lentinula edodes enhances the biocontrol activity of Cryptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits. International Journal of Food Microbiology. 138:243-249. https: //doi .org /10 .1016 /j.ij food micro.2010.01.044 Vekiru, E., Hametner, C., Mitterbauer, R., Rechthaler, J., Adam, G., Schatzmayr, G., Krska, R., and Schuhmacher, R. 2010. Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite. Applied and Environmental Microbiology. 76(7):2353-2359. https://doi: 10.1128/AEM.01438-09 Velmourougane, K., Bhat, R., Gopinandhan, T.N., and Panneerselvam, P. 2011. Management of Aspergillus ochraceus and ochratoxin-A contamination in coffee during on-farm processing through commercial yeast inoculation. Biological Control. 57:215-221. DOI: 10. 1016/j.biocontrol.2011.03.003 Zanon, MSA., Chiotta, ML., Giaj-Merlera, G., Barros, G., and Chulze, S. 2013. Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts. International Journal of Food Microbiology. 162:220-225. https://doi.org/10.1016/j.ijfoodmicro.2013.01.017



DOI: https://doi.org/10.22146/ifnp.39607

Article Metrics

Abstract views : 1636 | views : 2099

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Food and Nutrition Progress (print ISSN 0854-6177, online ISSN 2597-9388) is published by the Indonesian Association of Food Technologist in collaboration with Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada.

Journal of Indonesian Food and Nutrition Progress have been indexed by: 

   

 

This works is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.