Effects of Dietary Inclusion of Angelica gigas Nakai root extract on the Growth Performance, Hematological and Serum Biochemical Parameters in Broilers

https://doi.org/10.21059/buletinpeternak.v48i2.91533

Joseph Flores dela Cruz(1*), listya Purnamasari(2), Seong Gu Hwang(3)

(1) College of Veterinary Medicine, University of the Philippines Los Banos
(2) Department of Animal Husbandry, Faculty of Agriculture, University of Jember School of Animal Life Convergence Science, Hankyong National University
(3) School of Animal Life Convergence Science, Hankyong National University
(*) Corresponding Author

Abstract


The study aimed to evaluate the impact of dietary supplementation with Angelica gigas Nakai (AGN) root extract on growth performance, hematological indices, and serum biochemical parameters in broiler chickens. A total of 320 straight-run Cobb broiler chicks from a commercial hatchery were distributed among four treatment groups: Basal diet (BD) as the Control; Treatment 1 (T1): BD + 2 g/kg AGN; Treatment 2 (T2): BD + 4 g/kg AGN; and Treatment 3 (T3): BD + 8 g/kg AGN), each comprising eight replicates with 10 birds per replicate. The supplementation of AGN resulted in dose-dependent improvements (P < 0.05) in body weight, gain, and feed efficiency. On both day 21 and day 35, increasing AGN dosage in the diet led to a significantly higher (P < 0.05) values of red blood cells (RBCs), white blood cells (WBCs), hemoglobin (Hb), and packed cell volume (PCV). By day 21, AGN supplementation dose-dependently decreased (P < 0.05) serum alkaline phosphatase (ALP), aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), urea, and creatinine levels. Meanwhile, AGN dose escalation correlated with a notable increase (P < 0.05) in serum total protein (TP), albumin, and globulin levels. On day 35, increasing AGN levels led to a significant reduction (P < 0.05) in serum AST and ALT activity, along with lowered serum glucose, cholesterol, triglycerides, urea, and creatinine levels. In conclusion, AGN supplementation enhanced growth performance and positively influenced hematological indices and serum biochemistry profiles in broiler chickens. The study confirms the safe and effective utilization of AGN at an 8 g/kg (0.8 %) feed additive dosage to optimize broiler performance. These findings provide valuable insights into the potential benefits of AGN in poultry nutrition.


Keywords


Angelica gigas Nakai; Blood values; Broiler chicken; Feed additive; Serum biochemistry

Full Text:

2. Listya


References

Abudabos, A. M., A. H. Alyemni, Y. M. Dafalla, and R. U. Khan. 2018. The effect of phytogenics on growth traits, blood biochemical, and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. J. Appl. Anim. Res. 46: 691–695.

Ahmad, S., A. Khalique, T. N. Pasha, S. Mehmood, K. Hussain, S. Ahmad, and S. A. Bhatti. 2018. Influence of feeding Moringa oleifera pods as phytogenic feed additive on performance, blood metabolites, chemical composition and bioactive compounds of breast meat in broiler. Kafkas Univ. Vet. Fak. Derg. 24: 195–202.

Ahn, M. J., M. K. Lee, Y. C. Kim, and S. H. Sung. 2008. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography–diode array detector coupled with electrospray ionization/mass spectrometry. J. Pharm. Biomed. Analysis 46: 258-266.

Alhidary, I. A., M. M. Abdelrahman, R. U. Khan, and R. M. Harron. 2016. Antioxidant status and immune responses of growing camels supplemented a long-acting multi-trace minerals rumen bolus. Ital. J. Anim. Sci. 15: 343–349.

Aroche, R., Y. Martínez, Z. Ruan, G. Guan, S. Waititu, C. M. Nyachoti, D. Más, and S. Lan. 2018. Dietary inclusion of a mixed powder of medicinal plant leaves to enhance the feed efficiency and immune function in broiler chickens. J. Chem. 2018: 1–6.

Baudouin, K. A., K. Soualio, B. N. Mathieu, and Y. A. Paul. 2021. Haematological profile of broilers and local chickens in Korhogo, Cote D’Ivoire. Int. J. Agr. Env. Biores. 6: 14-23.

Beford, M. 2000. Removal of antibiotic growth promoters from poultry diets: Implications and strategies to minimise subsequent problems. Worlds Poult. Sci. J. 56: 47-365.

Cho, J.H., J. E. Kwon, Y. Cho, I Kim, and S. C. Kang. 2015. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)- 1 Expression. Nutrients. 7: 4862–4874.

Dibner, J. J. and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult. Sci. 84: 634–43.

Fontamillas, G., S. W. Kim, H. U. Kim, S. J. Kim, T. S. Park, and B. C. Park. 2019.Effects of Angelica gigas Nakai on the production of decursin- and decursinol angelate-enriched eggs. J. Sci. Food Agric. 99: 3117–3123.

Gilani, S. M. H., S. Zehra, S. Galani, and A. Ashraf. 2018. Effect of natural growth promoters on immunity, and biochemical and haematological parameters of broiler chickens. Trop. J. Pharm. Res. 17: 627–633.

He, J., L. Dong, W. Xu, K. Bai, C. Lu, Y. Wu, and T. Wang. 2015. Dietary tributyrin supplementation attenuates insulin resistance and abnormal lipid metabolism in suckling piglets with intrauterine growth retardation. PLoS ONE. 10: e0136848.

Hu, Y., Y. Wang, Y. Li, Z. Wang, X. Zhang, T. Yun, and Y. Yin. 2016. Effects of fermented rapeseed meal on antioxidant functions, serum biochemical parameters and intestinal morphology in broilers. Food Agric. Immunol. 27: 182–193.

Iwinski H., K. A. Chodkowska, K. Drabik, J. Batkowska, M. Karwowska, P. Kupropka, A. Szumowski, A. Szumny and H. Rozanski. 2023. The impact of Phytobiotic mixture on Broiler Chicken Health and Safety. Animals. 13: 2155.

Kim W. T., K. M. Kim, and J. S. Kang. 2020. Effect of Angelica gigas Nakai extract on hepatic damage in rats. Trop. J. Pharm. Res. 19: 1059-1064.

Ko, M. J., M. R. Kwon, and M. S. Chung. 2020. Pilot-scale subcritical-water extraction of nodakenin and decursin form Angelica gigas Nakai. Food Sci. Biotechnol. 29: 631–639.

Krauze, M., K. Abramowicz, and K. Ognik. 2020. The effect of the addition of probiotic bacteria (Bacillus subtilis or Enterococcus faecium) or phytobiotic containing cinnamon oil to drinking water on the health and performance of broiler chickens. Ann. Anim. Sci. 20: 191–205.

Lee, J. Y., J. W. Park, E. S. Seo, H. U. Kim, S. W. Han, J. S. Han, H. S. jun, S. J. Kim, T. S. Park, and B. C. Park. 2019. Functional efficacy analysis of Angelica gigas Nakai on chicken myoblast cells through cell‐based in vitro assay. Anim. Sci. J. 2019: 1-10.

Lee, Y. R. 2021.Biological Activities of Extracts from Leaf of Angelica gigas Nakai. Korean J. Food Preserv. 34: 181–186.

Liu, Q. W., J. H. Feng, Z. Chao, Y. Chen, L. M. Wei, F. Wang, R. P. Sun, and M. H. Zhang. 2015. The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers. J. Anim. Physiol. Anim. Nutr. 100: 301–308.

Mountzouris, K. C., V. Paraskevas, P. Tsirtsikos, I. Palamidi, T. Stenier, and G. Schatzmayr. 2011. Assessment of a phytogenic feed additive effect on broiler growth performance, nutrient digestibility and caecal micro flora composition. Anim. Feed Sci. Technol. 168: 223–31.

National Research Council (NRC). 1994. Nutrient Requirement of Poultry, 9th. National Academy Press, Washington DC.

Niu, Y., J. F. Zhang, X. L. Wan, Q. Huang, J. T. He, X. H. Zhang, and T. Wang. 2019. Effect of fermented Ginkgo biloba leaves on nutrient utilisation, intestinal digestive function and antioxidant capacity in broilers. Br. Poult. Sci. 60: 47–55.

Oghenebrorhie, O. and O. Oghenesuvwe. 2016. Performance and haematological characteristics of broiler finisher fed Moringa oleifera leaf meal diets. J. Northeast. Agric. Univ. 23: 28–34.

Olanrewaju H. A., J. P. Thaxton, W. A. Dozier III, and S. L. Branton. 2007. Electrolyte diets, stress, and acid-base balance in broiler chickens. Poultry Sci. 86: 1363-1371.

Oloruntola, O. D., S. O. Ayodele, J. O. Agbede, and D. A. Oloruntola. 2016. Effect of feeding broiler chickens with diets containing Alchornea cordifolia leaf meal and enzyme supplementation. Arch. Zootec. 65: 489–498.

Park, I. S., B. Kim, Y. Han, H. Yang, U. Cho, S. I. Kim, J. H. Kim, J. H. Y. Park, K. W. Lee, and Y. S. Song. 2020. Decursin and Decursinol Angelate Suppress Adipogenesis through Activation of β-catenin Signaling Pathway in Human Visceral Adipose-Derived Stem Cells. Nutrients. 12: 13.

Park, J. K., W. M. L. Lumbera, J. F. dela Cruz, S. E. Jeong, and S. G. Hwang. 2015. The hot water extract of Angelica gigas nakai root promotes adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells. J. Physiol. Pharm. Adv. 5: 795 – 802.

Paul, S., M. Islam, E. M. Tanvir, R. Ahmed, S. Das, N. E. Rumpa, and M. Khalil. 2016. Satkara (Citrus macroptera) fruit protects against acetaminophen-induced hepatorenal toxicity in rats. Evid. Based Complement. Altern. Med. 9470954.

Reis, J. H., R. R. Gebert, M. Barreta, M. D. Baldissera, I. D. dos Santos, R. Wagner, and R. E. Mendes. 2018. Effects of phytogenic feed additive based on thymol, carvacrol and cinnamic aldehyde on body weight, blood parameters and environmental bacteria in broilers chickens. Microb. Pathog. 125: 168–176.

Rhiouani, H., J. El-Hilaly, Z. H. Israili, and B. Lyoussi. 2008. Acute and sub-chronic toxicity of an aqueous extract of the leaves of Herniaria glabra in rodents. J. Ethnopharmacol. 118: 378–386.

Roman, Y., M. C. Bomsel-Demontoy, J. Levrier, D. Ordonneau, D. Chaste-Duvernoy, M. Saint Jalme. 2009. Influence of molt on plasma protein electrophoretic patterns in bar-headed geese (Anser indicus). J. Wildl. Dis. 45: 661–671.

Rubio, M. S., A. C. Laurentiz, F. Sobrane, E. S. Mello, R. S. Filardi, M. L. A. Silva, and R. S. Laurentiz. 2019. Performance and Serum Biochemical Profile of Broiler Chickens Supplemented with Piper Cubeba Ethanolic Extract. Braz. J. Poult. Sci. 21: 1–8.

Shehzad, A., S. Parveen, M. Qureshi, F. Subhan, and Y. S. Lee. 2018. Decursin and decursinol angelate: Molecular mechanism and therapeutic potential in inflammatory diseases. Inflamm. Res. 67: 209–218.

Sowndhararajan, K. and S. Kim. 2017. Neuroprotective and Cognitive Enhancement Potentials of Angelica gigas Nakai Root: A Review. Sci. Pharm. 85: 21.

Thrall, M. A., G. Weiser, R. Allison, and T. Campbell. 2012. Veterinary Hematology and Clinical Chemistry, 2nd ed; John Wiley & Sons: Oxford, UK. 582–598.

Toghyani, M., M. Toghyani, A. Gheisari, G. Ghalamkari, and S. Eghbalsaied. 2011. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical, and haematological parameters in broiler chicks. Livest. Sci. 138: 167–173.

Tothova, C., E. Sesztáková, B. Bielik, and O. Nagy. 2019. Changes of total protein and protein fractions in broiler chickens during the fattening period. Vet. World 12: 598.

Tothova, C., O. Nagy, and G. Kovac. 2016. Serum proteins and their diagnostic utility in veterinary medicine: A review. Vet. Med. 61: 475–496.

Valenzuela-Grijalva N. V., A. Pinelli-Saavedra, A. Muhlia-Almazan, D. Domínguez-Díaz, and H. González-Ríos. 2017. Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Technol. 59: 8.

Vispute, M. M., D. Sharma, A. B. Mandal, J. J. Rokade, P. K. Tyagi, and A. S. Yadav. 2019. Effect of dietary supplementation of hemp (Cannabis sativa) and dill seed (Anethum graveolens) on performance, serum biochemicals and gut health of broiler chickens. J. Anim. Physiol. Anim. Nutr. 103: 525–533.

Zhang, J., L. Li, C. Jiang, C. Xing, S. H. Kim, and J. Lü. 2012. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds. Anticancer Agents Med. Chem. 12: 1239–1254.

Zhang, Y., S. Chen, C. Wei, J. Chen, and X. Ye. 2017. Proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves regulate lipid metabolism and glucose consumption by activating AMPK pathway in HepG2 cells. J. Funct. Food. 29: 217–225.

Zhou, H., C. Wang, J. Ye, H. Chen, and R. Tao. 2015. Effects of dietary supplementation of fermented Ginkgo biloba L. residues on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Anim. Sci. J. 86: 790–799.



DOI: https://doi.org/10.21059/buletinpeternak.v48i2.91533

Article Metrics

Abstract views : 1002 | views : 547

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.