Resistance Profile of Extended Spectrum Beta Lactamase-Producing Escherichia coli Bacteria using Vitek® 2 Compact Method

https://doi.org/10.21059/buletinpeternak.v44i2.51347

Freshinta Jellia Wibisono(1), Bambang Sumiarto(2), Tri Untari(3), Mustofa Helmi Effendi(4*), Dian Ayu Permatasari(5), Adiana Mutamsari Witaningrum(6)

(1) Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(2) Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(3) Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(4) Department of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, 60115, Indonesia
(5) Department of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, 60115, Indonesia
(6) Department of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya, 60115, Indonesia
(*) Corresponding Author

Abstract


This study aimed to determine the resistance profile and the nature of multidrug resistance in Extended Spectrum Beta Lactamase (ESBL)-producing Escherichia coli (E.coli) against several classes of antibiotics. Positive isolates of ESBL-producing E.coli were tested for antibiotic sensitivity using the VITEK® 2 compact method which then analyzed automatically. The results showed an antibiotic resistance profile against ESBL-producing E.coli showed the highest level of antibiotics in beta lactam, amoxicillin, ampicillin, cefazolin, cefotaxime, and ceftriaxone at 100%. Subsequent results found a relatively high level of resistance in the antibiotics aztreonam (86.36%), trimethoprim/sulfamethoxazole (77.27%), gentamicin (72.73%), and ciprofloxacin (68.18%). Antibiotics from carbapenem groups such as ertapenem and memenem, and antibiotics from the aminoglycosides (amicasin) and tigecycline groups of tetracycline still showed a high sensitivity level of 100%. The most common resistance patterns found in ESBL-producing E.coli isolates are AM/AMP/KZ/CTX/CRO/ATM/GM/CIP as much as 22.73%, and AM/AMP/KZ/CTX/CRO/ATM/GM/CIP/SXT patterns of 18.2%. The results of multi-class antibiotic resistance showed that 86.36% had multidrug resistance. The highest multidrug resistance pattern in ESBL-producing E.coli occurred with a BL/AG/Q/SP pattern of 50%. Other patterns of multidrug resistance in ESBL-producing E.coli that can be found in this study are, the BL/AG/Q/SP pattern is 18.20%, the BL/AG/Q/SP pattern is 13.64%, and the BL/AG/Q pattern is 4.55%. The high profile of resistance and the nature of multidrug resistance in ESBL-producing E.coli has the potential to spread these resistant genes, thus risking the use of antibiotics as a public health therapy and animal health, therefore further evaluation and control are needed.


Keywords


ESBL-producing Escherichia coli; Multidrug resistance; Vitek® 2 Compact Method

Full Text:

PDF


References

Amelia, A., A. Nugroho, and P. N. Harijanto. 2016. Diagnosis and management of infections caused by enterobacteriaceae producing extended spectrum Beta-Lactamase. Acta Medica Indonesiana -The Indonesian Journal of Internal Medicine. 48: 156–166.

Biomerieux. 2017. AST and Resistance Detection, Antibiotic Suceptibility Testing bioMérieux Industry website. Available from: http://www.biomerieux-industry.com/ast-and-resistance-detection.

Biutifasari, V. 2018. Extended Spectrum Beta – Lactamase (ESBL ). oceana Biomedicina Journal. 1: 1–6.

Brower, C. H., S. Mandal, S. Hayer, M. Sran, A. Zehra, S. J. Patel, R. Kaur, L. Chatterjee, S. Mishra, B. R. Das, P. Singh, R. Singh, J. P. S. Gill, and R. Laxminarayan. 2017. The prevalence of extended-spectrum beta-lactamase-producing multidrug-resistant Escherichia coli in poultry chickens and variation according to farming practices in Punjab, India. Environmental Health Perspectives. 125: 1–10. doi:10.1289/EHP292.

Bywater, R., H. Deluyker, E. Deroover, A. de Jong, H. Marion, M. McConville, T. Rowan, T. Shryock, D. Shuster, V. Thomas, M. Vallé, and J. Walters. 2004. A European survey of antimicrobial susceptibility among zoonotic and commensal bacteria isolated from food-producing animals. Journal of Antimicrobial Chemotherapy. 54:744–754. doi:10.1093/jac/dkh422.

Clinical and Laboratory Standards Institute (CLSI). 2017. M100 Performance Standards for Antimicrobial. 27th ed. Clinical and Laboratory Standards Institute, USA. Available from: www.clsi.org

Cormican, M. G., S. A. Marshall, and R. N. Jones. 1996. Detection of extended-spectrum β-lactamase (ESBL)-producing strains by the Etest ESBL screen. Journal of Clinical Microbiology. 34: 1880–1884.

Duggal, S., R. Gaind, N. Tandon, M. Deb, and T. Das Chugh. 2012. Comparison of an automated system with conventional identification and antimicrobial susceptibility testing. International Scholarly Research Network Microbiology. 2012. doi:10.5402/2012/107203.

Effendi, M. H., I. G. Bintari, E. B. Aksoro, and I. P. Hermawan. 2018. Detection of blaTem Gene of Klebsiella pneumoniae Isolated from swab of food-producing animals in East Java. Tropical Animal Science Journal. 41: 174–178. doi:10.5398/tasj.2018.41.3.174.

Hammerum, A. M., J. Larsen, V. D. Andersen, C. H. Lester, T. S. S. Skytte, F. Hansen, S. S. Olsen, H. Mordhorst, R. L. Skov, F. M. Aarestrup, and Y. Agersø. 2014. Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. Journal of Antimicrobial Chemotherapy. 69: 2650–2657. doi:10.1093/jac/dku180.

Handayani, R. S., S. Siahaan, and M. J. Herman. 2017. Resistensi antimikroba dan penerapan kebijakan pengendalian di Rumah Sakit di Indonesia. Jurnal Penelitian dan Pengembangan Pelayanan Kesehatan. 1: 131–140.

Kürekci, C., M. Aydin, M. Yipel, M. Katouli, and A. Gündogdu. 2017. Characterization of extended spectrum β-lactamase (ESBL)-producing Escherichia coli in Asi (Orontes) River in Turkey. Journal of Water and Health. 15: 788–798. doi:10.2166/wh.2017.257.

Kurniawati, A. F., P. Satyabakti, and N. Arbianti. 2015. Perbedaan Risiko Multidrug Resistance Organisms (MDROS) Menurut Faktor Risiko dan Kepatuhan Hand Hygiene. Jurnal Berkala Epidemiologi. 3:277–289. doi:http://dx.doi.org/10.20473/jbe.V3I32015.277-289.

Lim, C. L. L., W. Lee, A. L. C. Lee, L. T. T. Liew, S. C. Nah, C. N. Wan, M. P. Chlebicki, and A. L. H. Kwa. 2013. Evaluation of ertapenem use with impact assessment on extended-spectrum beta-lactamases (ESBL) production and gram-negative resistance in Singapore general hospital (SGH). BMC Infectious Diseases. 13: 1–10. doi:10.1186/1471-2334-13-523.

Masruroh, C. A., M. B. Sudarwanto, and H. Latif. 2016. Tingkat kejadian Escherichia coli penghasil extended spectrum Β -Lactamase yang diisolasi dari feses broiler di kota Bogor. Jurnal Sain Veteriner. 34: 42–49.

Niasono, A. B., H. Latif, and T. Purnawarman. 2019. Resistensi antibiotik terhadap bakteri Escherichia coli yang diisolasi dari peternakan ayam pedaging di Kabupaten Subang, Jawa Barat. Jurnal Veteriner. 20: 187–195. doi:10.19087/jveteriner.2019.20.2.187.

Noor, S. M. and M. Poeloenga. 2005. Pemakaian antibiotika pada ternak. Lokakarya Nasional Keamanan Pangan Produk Peternakan. Auditorium Balai Penelitian Veteriner. Bogor. 56–64.

Normaliska, R., M. B. Sudarwanto, and H. Latif. 2019. Pola resistensi antibiotik pada Escherichia coli penghasil ESBL dari sampel lingkungan di RPH-R Kota Bogor. Acta Veterinaria Indonesiana. 7: 42–48. doi:10.29244/avi.7.2.42-48.

Nuangmek, A., S. Rojanasthien, S. Chotinun, P. Yamsakul, P. Tadee, V. Thamlikitkul, N. Tansakul, and P. Patchanee. 2018. Antimicrobial resistance in ESBL-Producing Escherichia coli isolated from layer and pig farms in Thailand. Acta Scientiae Veterinariae. 46: 1538.

O’Hara, C. M. 2005. Manual and automated instrumentation for identification of enterobacteriaceae and other aerobic gram-negative bacilli. Clinical microbiology reviews. 18: 147–162. doi:10.1128/CMR.18.1.147.

Paterson, D. L. and R. A. Bonomo. 2005. Extended Spectrum Beta-Lactamases : a Clinical Update. Clinical Microbiology Reviews. 18: 657–686. doi:10.1128/CMR.18.4.657.

Rank, E. L., T. Lodise, L. Avery, E. Bankert, E. Dobson, G. Dumyati, S. Hassett, M. Keller, M. Pearsall, T. Lubowski, and J. J. Carreno. 2018. Antimicrobial susceptibility trends observed in urinary pathogens obtained from New York state. Open Forum Infectious Diseases. 5: 1–6. doi:10.1093/ofid/ofy297.

Santos, L. L. dos, R. A. Moura, P. Aguilar-Ramires, A. P. De Castro, and N. Lincopan. 2013. Current status of extended-spectrum β -lactamase ( ESBL ) -producing Enterobacteriaceae in animals. Microbial pathogens and strategies for combating them: science, technology and education. 1600–07.

Schroeder, C. M., D. G. White, and J. Meng. 2004. Retail meat and poultry as a reservoir of antimicrobial-resistant Escherichia coli. Food Microbiology. 21:249–255. doi:10.1016/S0740-0020(03)00074-1.

Schmid, A., S. Hörmansdorfer, U. Messelhäusser, A. Käsbohrer, C. Sauter-Louis, and R. Mansfeld. 2013. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Applied and Environmental Microbiology. 79: 3027–3032. doi:10.1128/AEM.00204-13.

Sudarwanto, M. B., D. W. Lukman, T. Purnawarman, H. Latif, H. Pisestyani, and E. Sukmawinata. 2017. Multidrug resistance extended spectrum β-lactamase and AmpC producing Escherichia coli isolated from the environment of Bogor Slaughterhouse, Indonesia. Asian Pacific Journal of Tropical Biomedicine. 7: 708–711. doi:10.1016/j.apjtb.2017.07.012.

Sugiartha, I. G. E. 2016. Perbandingan Hasil Identifikasi Metode Analytical Profile Index (API) dan Tes Kepekaan Antibiotika Konvensional dengan Metode Technical Dedicated Reasonable (TDR)-300B. Universitas Airlangga.

Wang, X., C. Cao, H. Huan, L. Zhang, X. Mu, Q. Gao, X. Dong, S. Gao, and X. Liu. 2015. IsoEc22 R S R S S R MDR BL/AG/Q/ SPlation, identification, and pathogenicity of O142 avian pathogenic EscherichEc22 R S R S S R MDR BL/AG/Q/SPia coli causing black proventriculus and septicemia in broiler breeders. Infection, Genetics and Evolution. 32:23–29. doi:10.1016/j.meegid.2015.02.013.

Wibisono, F. J., B. Sumiarto, and T. K. Kusumastuti. 2018. Economic losses estimation of pathogenic Escherichia coli infection in Indonesian Poultry Farming. Buletin Peternakan 42: 341–346. doi:10.21059/buletinpeternak.v42i4.37505.

Wiedosari, E. and S. Wahyuwardani. 2015. A case study on the diseases of broiler chicken in Sukabumi and Bogor Districts. Jurnal Kedokteran Hewan. 9: 9–13.



DOI: https://doi.org/10.21059/buletinpeternak.v44i2.51347

Article Metrics

Abstract views : 2199 | views : 2129

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.