Small Intestine Characteristics and Nutrient Retention in Broiler Chickens Submitted to Different Protein Regimes and Betaine Supplementation
Adi Ratriyanto(1*), Sunarto Sunarto(2)
(1) Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
(2) Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
(*) Corresponding Author
Abstract
This study was designed to determine the intestinal characteristics and nutrient retention of broiler chickens subjected to different protein regimes supplemented with betaine. Four experimental diets were formulated, consisting of two basal diets containing 20% and 23% crude protein (CP), both with and without betaine supplementation at the level of 0.14%. The diets were applied to 180 broiler chickens that were randomly allotted to 2×2 factorial arrangement with five replicates of nine chickens each. The diet with 20.0% CP generated better small intestine characteristics than the diet with 23.0% CP as indicated by the longer ileum and total small intestine length (P<0.05). This improvement was associated with lessened CP excretion and improved dry matter (DM) and CP retention (P<0.05) in the birds fed 20% CP. Furthermore, dietary betaine supplementation enhanced the ileum, total small intestine length, villus height, and villus-to-crypt ratio (P<0.05), indicating a greater surface area for nutrient absorption. This enhancement was reflected in the reduction of DM and CP excretion and improvement in DM and CP retention in the betaine supplemented group (P<0.05). Therefore, we conclude that feeding a diet of 20% CP with betaine supplementation improved the small intestine characteristics and nutrient retention of broiler chickens.
Keywords
Full Text:
PDFReferences
Ahmed, M. M. N., Z. S. H. Ismail, and A. A. A. Abdel-Wareth. 2018. Effect of dietary supplementation of prebiotic, betaine and their combination on growth performance, nutrient digestibility, carcass criteria and cecum microbial population of ducks under hot environmental conditions. Egypt. Poult. Sci. J. 38: 289-304.
AOAC. 2001. Official Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washington DC.
Attia, Y. A., A. E. E. Abd-El-Hamid, A. A. Abedalla, M. A. Berika, M. A. Al-Harthi, O. Kucuk, K. Sahin, and B. M. Abou-Shehema. 2016. Laying performance, digestibility and plasma hormones in laying hens exposed to chronic heat stress as affected by betaine, vitamin C, and/or vitamin E supplementation. Springerplus. 5: 16-19.
Attia, Y. A., R. A. Hassan, M. H. Shehatta, and S. B. Abd El-Hady. 2005. Growth, carcass quality and serum constituents of slow growing chicks as affected by betaine addition to diets containing 2. Different levels of methionine. Int. J. Poult. Sci. 4: 856-865.
Blair, R., J. P. Jacob, S. Ibrahim, and P. Wang. 1999. A quantitative assessment of reduced protein diets and supplements to improve nitrogen utilization. J. Appl. Poult. Res. 8: 25-47.
Chand, N., S. Naz, H. Maris, R. U. Khan, S. Khan, and M. S. Qureshi. 2017. Effect of betaine supplementation on the performance and immune response of heat stressed broilers. Pak. J. Zool. 49: 1857-1862.
Daghir, N. 2009. Nutritional strategies to reduce heat stress in broilers and broiler breeders. Lohmann Inf. 44: 6-15.
De Faria Filho, D. E., D. M. B. Campos, K. A. Alfonso-Torres, B. S. Vieira, P. S. Rosa, A. M. Vaz, M. Macari, and R. L. Furlan. 2007. Protein levels for heat-exposed broilers: Performance, nutrients digestibility, and energy and protein metabolism. Int. J. Poult. Sci. 6: 187-194.
Dos Santos, T. T., S. C. Dassi, C. R. C. Franco, C. R. V. da Costa, S. A. Lee, and A. V. Fisher da Silva. 2018. Influence of fibre and betaine on development of the gastrointestinal tract of broilers between hatch and 14 d of age. Anim. Nutr. 5: 163-173.
El-Husseiny, O. M., M. A. Abo-El-Ella, M. O. Abd-Elsamee, and M. M. Abd-Elfattah. 2007. Response of broilers performance to dietary betaine and folic acid at different methionine levels. Int. J. Poult. Sci. 6: 515-523.
Esmailzadeh, L., M. Shivazad, A. A. Sadeghi, and M. Karimitorshizi. 2016. Performance, intestinal morphology and microbiology of broiler chickens fed egg powder in the starter diet. Rev. Bras. Cienc. Avic. 18: 705-710.
Gous, R. M., A. S. Faulkner, and H. K. Swatson. 2018. The effect of dietary energy:protein ratio, protein quality and food allocation on the efficiency of utilisation of protein by broiler chickens. Br. Poult. Sci. 59: 100-109.
Hamidi, H., R. Jahanian, and J. Pourreza. 2010. Effect of dietary betaine on performance, immunocompetence and gut contents osmolarity of broilers challenged with a mixed coccidial infection. Asian J. Anim. Vet. Adv. 5: 193-201.
Kettunen, H., S. Peuranen, and K. Tiihonen. 2001a. Betaine aids in the osmoregulation of duodenal epithelium of broiler chicks, and affects the movement of water across the small intestinal epithelium in vitro. Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 129: 595-603.
Kettunen, H., S. Peuranen, K. Tiihonen, and M. Saarinen. 2001b. Intestinal uptake of betaine in vitro and the distribution of methyl groups from betaine, choline, and methionine in the body of broiler chicks. Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 128: 269-278.
Kettunen, H., K. Tiihonen, S. Peuranen, M. T. Saarinen, and J. C. Remus. 2001c. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 130: 759-769.
Li, Y. X., Y. Q. Qang, Y. Z. Pang, J. X. Li, X. H. Xie, T. J. Guo, and W. Q. Li. 2011. The effect of crude protein level in diets on laying performance, nutrient digestibility of yelow quails. Int. J. Poult. Sci. 10: 110-112.
Liu, W., Y. Yuan, C. Sun, B. Balasubramanian, Z. Zhao, and L. An. 2019. Effects of dietary betaine on growth performance, digestive function, carcass traits, and meat quality in indigenous yellow-feathered broilers under long-term heat stress. Animals. 9: 506.
Marais, J. P. 2000. Use of Markers. In: Farm Animal Metabolism and Nutrition. J. P. F. D’Mello, editor. Farm Animal Metabolism and Nutrition. CABI Publishing, Wallingford. p. 255-277.
Metzler-Zebeli, B. U., M. Eklund, and R. Mosenthin. 2009. Impact of osmoregulatory and methyl donor functions of betaine on intestinal health and performance in poultry. Worlds. Poult. Sci. J. 65: 419-442.
Moosavi, M., M. Chaji, S. Rahimnahal, and A. R. Kazemi. 2012. Effect of different levels of energy and protein with constant ratio on performance and carcass characteristics in broiler chickens. Int. Res. J. Appl. Basic Sci. 3: 2485-2488.
National Research Council. 1994. Nutrient Requirements of Poultry. 9th edn. National Academic Press, Washington DC.
R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
Rao, S. V. R., M. V. L. N. Raju, A. K. Panda, P. Saharia, and G. S. Sunder. 2011. Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian-Australasian J. Anim. Sci. 24: 662-669.
Rashid, H. O. S., E. E. M. Huwaida, and A. Y. Ibrahim. 2012. Effect of dietary protein level and strain on growth performance of heat stressed broiler chicks. Int. J. Poult. Sci. 11: 649-653.
Ratriyanto, A., R. Indreswari, and Sunarto. 2014. Effects of protein levels and supplementation of methyl group donor on nutrient digestibility and performance of broiler chickens in the tropics. Int. J. Poult. Sci. 13: 575-581.
Ratriyanto, A. and R. Mosenthin. 2018. Osmoregulatory function of betaine in alleviating heat stress in poultry. J. Anim. Physiol. Anim. Nutr. (Berl). 102: 1634-1650.
Ratriyanto, A., R. Mosenthin, E. Bauer, and M. Eklund. 2009. Metabolic, osmoregulatory and nutritional functions of betaine in monogastric animals. Asian-Australasian J. Anim. Sci. 22: 1461-1476.
Ratriyanto, A., and S. Prastowo. 2019. Floor space and betaine supplementation alter the nutrient digestibility and performance of Japanese quail in a tropical environment. J. Therm. Biol. 18: 80-86.
Sakomura, N. K., N. A. A. Barbosa, F. A. Longo, E. P. da Silva, M. A. Bonato, and J. B. Fernandes. 2013. Effect of dietary betaine supplementation on the performance, carcass yield, and intestinal morphometrics of broilers submitted to heat stress. Rev. Bras. Ciência Avícola. 15: 105-112.
Sayed, M. A. M. and J. Downing. 2011. The effects of water replacement by oral rehydration fluids with or without betaine supplementation on performance, acid-base balance, and water retention of heat-stressed broiler chickens. Poult. Sci. 90: 157-167.
Steel, R. G. D., J. H. Torrie, and D. A. Dickey. 1996. Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill, New York.
Weiss, E., M. Eklund, A. Semaskaite, R. Urbaityte, B. Metzler-Zebeli, N. Sauer, A. Ratriyanto, R. Gruzauskas, and R. Mosenthin. 2013. Combinations of feed additives affect ileal fibre digestibility and bacterial numbers in ileal digesta of piglets. Czech J. Anim. Sci. 58: 351-359.
DOI: https://doi.org/10.21059/buletinpeternak.v44i1.51142
Article Metrics
Abstract views : 2966 | views : 2032Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Buletin Peternakan (Bulletin of Animal Science) Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.