Thermotolerant Capacity of Diverse Indonesian Lowland Holstein's Black and White Skin-Pigmentation Intensity

https://doi.org/10.21059/buletinpeternak.v49i4.110904

Sigid Prabowo(1*), Ahmad Yani(2), Cece Sumantri(3), Iwan Prihantoro(4), Ahmad Romadhoni Surya Putra(5), Ferdian Achmad(6), Muhammad Pramujo(7), Poppy Satya Puspita(8), Serdar Güler(9)

(1) Department of Animal Production Technology, Faculty of Animal Science, IPB University, Jl. Agatis Kampus IPB Dramaga, Bogor, Indonesia 16680
(2) Department of Animal Production Technology, Faculty of Animal Science, IPB University, Jl. Agatis Kampus IPB Dramaga, Bogor, Indonesia 16680
(3) Department of Animal Production Technology, Faculty of Animal Science, IPB University, Jl. Agatis Kampus IPB Dramaga, Bogor, Indonesia 16680
(4) Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis Kampus IPB Dramaga, Bogor, Indonesia 16680
(5) Faculty of Animal Science, Gadjah Mada University, Jl. Fauna No. 3 Bulaksumur, Yogyakarta, Indonesia 55281
(6) Polytechnic of Agricultural Development Yogyakarta-Magelang, Jl. Magelang-Kopeng KM.7 Magelang, Central Java, Indonesia 56101
(7) Faculty of Animal Science, Brawijaya University, Jl. Veteran, Ketawanggede, Lowokwaru, Malang City, East Java, Indonesia 65145
(8) Faculty of Animal Science, Brawijaya University, Jl. Veteran, Ketawanggede, Lowokwaru, Malang City, East Java, Indonesia 65145
(9) Department of Animal Science, Faculty of Veterinary Medicine, Dokuz Eylül University, Cumhuriyet Mahallesi, Cami Sokak, Kiraz-İzmir, Türkiye 35890
(*) Corresponding Author

Abstract


The lowland area of Indonesia has economic potential to develop as a major centre for dairy farming businesses. Still, there is a foremost matter: overheated irradiation immersed in damped air would increase the heat stress level. The present study was conducted to assess the heat stress tolerance level of lowland Indonesian Holstein cows, characterized by a dominant level of Black and White (B/W) pigmented skin coat. This study involved 34 heads of Holstein cows that were cared for in Eastern Jakarta. Breathing frequency (BF), rectum's warmth (RW), pulse rate (PL), white-skinned spot temperature (WSST), black-skinned spot temperature (BSST), average temperature rounded skin (ATRS), back region temperature (BRT), chest region temperature (CRT), upper-leg temperature (ULT), lower-leg temperature (LLT), skin's temperature (ST), body's temperature (BT), and heat tolerance coefficient (HTC) as variables were checked statistically with R 4.4.2 type software comprised correlation and independent t-test. Cows B/W classification performed with the imageJ 1.54g series program. Those analyses showed that most lowland Indonesian Holsteins were characterized by black-pigmented dominant cows (BDC). The pigmentation of both lateral sides of the body generated a significant correlation (p<0.05 and p<0.01) with several vital symptoms, including WSST, ATRS, ST, BT, and HTC, but only in the BDC Holstein class. The test of mean distinction between the two classes (BDC and WDC) produced statistically insignificant differences (p>0.05) in all measurable vital symptoms; all variables showed trends indicating that the BDC class had a greater response to heat stress. The BDC Holstein type selection base had high expectations of elevating the HTC score in Indonesian lowland cows, as the closing decision.

Keywords


Coastline region, Dairy cattle, Heat stress, Humid, Tropical



References


Ali, S. A., and Naaz, I. (2015). Current challenges in understanding the story of skin pigmentation—Bridging the morpho-anatomical and functional aspects of mammalian melanocytes. In Muscle Cell and Tissue (Vol. 1, pp. 262-285). Intech. https://doi.org/10.5772/60714

Ammer, S., Lambertz, C., and Gauly, M. (2016). Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions. Journal of Dairy Research, 83(2), 165-172. https://doi.org/10.1017/S0022029916000182

Andrew, W., Gao, J., Mullan, S., Campbell, N., Dowsey, A. W., and Burghardt, T. (2021). Visual identification of individual Holstein-Friesian cattle via deep metric learning. Computers Electronics in Agriculture, 185, 106133. https://doi.org/10.1016/j.compag.2021.106133

Apdini, T., van Middelaar, C. E., and Oosting, S. (2024). Developing sustainable dairy farms in the tropics: From policy to practice. Agricultural Systems, 220(1), 104097. https://doi.org/10.1016/j.agsy.2024.104097

Asmarasari, S. A., Azizah, N., Sutikno, S., Puastuti, W., Amir, A., Praharani, L., Rusdiana, S., Hidayat, C., Hafid, A., and Kusumaningrum, D. A. (2023). A review of dairy cattle heat stress mitigation in Indonesia. J. Veterinary World, 16(5), 1098. https://doi.org/10.14202/vetworld.2023.1098-1108

Baek, K., and Lee, C. (2015). Hair coat color influenced the longevity of Holsteins in the Sub-tropics. Livestock Management, College of Tropical Agriculture Human Resources, University of Hawai’i at Manoa, 30(1), 1-6. https://www.ctahr.hawaii.edu/oc/freepubs/pdf/LM-30.pdf

Bastonini, E., Kovacs, D., and Picardo, M. (2016). Skin pigmentation and pigmentary disorders: focus on epidermal/dermal cross-talk. Annals of Dermatology, 28(3), 279-289. https://doi.org/10.5021/ad.2016.28.3.279

Becerril, C., Wilcox, C., Lawlor, T., Wiggans, O., and Webb, D. (1993). Effects of percentage of white coat color on Holstein production and reproduction in a subtropical environment. Journal of Dairy Science, 76(8), 2286-2291. https://doi.org/10.3168/jds.S0022-0302(93)77565-7

Beede, D., and Collier, R. (1986). Potential nutritional strategies for intensively managed cattle during thermal stress. Journal of animal science, 62(2), 543-554. https://doi.org/10.2527/jas1986.622543x

Berman, A. (2005). Estimates of heat stress relief needs for Holstein dairy cows. Journal of animal science, 83(6), 1377-1384. https://doi.org/10.2527/2005.8361377x

Berman, A. (2006). Extending the potential of evaporative cooling for heat-stress relief. Journal of Dairy Science, 89(10), 3817-3825. https://doi.org/10.3168/jds.S0022-0302(06)72423-7

Cartwright, S. L., Schmied, J., Karrow, N., and Mallard, B. A. (2023). Impact of heat stress on dairy cattle and selection strategies for thermotolerance: A review. Frontiers in Veterinary Science, 10, 1198697. https://doi.org/10.3389/fvets.2023.1198697

Chen, L., Thorup, V., and Østergaard, S. (2025). Modeling the effects of heat stress on production and enteric methane emission in high-yielding dairy herds. Journal of Dairy Science, 108(4), 3956-3964. https://doi.org/10.3168/jds.2024-25460

Chen, X., Dong, J. N., Rong, J. Y., Xiao, J., Zhao, W., Aschalew, N. D., Zhang, X. F., Wang, T., Qin, G. X., and Sun, Z. (2022). Impact of heat stress on milk yield, antioxidative levels, and serum metabolites in primiparous and multiparous Holstein cows. Tropical Animal Health Production, 54(3), 159. https://doi.org/10.1007/s11250-022-03159-x

Collier, R., Collier, J., Rhoads, R., and Baumgard, L. (2008). Genes involved in the bovine heat stress response: An invited review. Journal of Dairy Science, 91(2), 445-454. https://doi.org/10.3168/jds.2007-0540

Da Silva, R. G., La Scala Jr, N., and Tonhati, H. (2003). Radiative properties of the skin and haircoat of cattle and other animals. Transactions of the ASAE, 46(3), 913. https://elibrary.asabe.org/abstract.asp?aid=13567

Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., and Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. J. Veterinary World, 9(3), 260. https://doi.org/10.14202/vetworld.2016.260-268

Djunarsjah, E., and Putra, A. (2021). The concept of an archipelagic Province in Indonesia. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/777/1/012040

Eizirik, E., and Trindade, F. J. (2021). Genetics and evolution of mammalian coat pigmentation. Annual Review of Animal Biosciences, 9(1), 125-148. https://doi.org/10.1146/annurev-animal-022114110847

Gaalaas, R. (1947). A study of heat tolerance in Jersey cows. Journal of Dairy Science, 30(2), 79-85. https://doi.org/10.3168/jds.S0022-0302(47)92321-7

Hamblin, M. R. (2023). Photobiomodulation for skin pigmentation disorders: a dual-function treatment. Photobiomodulation, Photomedicine, Laser Surgery, 41(5), 199-200. https://doi.org/10.1089/photob.2023.0040

Hearing, V. J. (2011). Milestones in melanocytes/melanogenesis. Journal of Investigative Dermatology, 131(Supplement 3), E1. https://doi.org/10.1038/skinbio.2011.1

Iskandar, I. (2011). Performan reproduksi sapi PO pada dataran rendah dan dataran tinggi di Provinsi Jambi. Jurnal Ilmiah Ilmu-Ilmu Peternakan, 14(1), 51-61. https://doi.org/10.22437/jiiip.v0i0.588

Kim, H. T., Choi, H. L., Lee, D. W., and Yoon, Y. C. (2005). Recognition of individual Holstein cattle by imaging body patterns. Asian-Australasian Journal of Animal Sciences, 18(8), 1194-1198. https://doi.org/10.5713/ajas.2005.1194

Kurniawan, A., Graham, L. B., Applegate, G., Arifanti, V. B., Akbar, A., Hadi, E. E. W., and Idrus, N. I. (2024). Impacts of rainfall on peat fire during the dry season and wet dry season on degraded tropical peatland in South Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1315/1/012060

Laible, G., Cole, S.-A., Brophy, B., Wei, J., Leath, S., Jivanji, S., Littlejohn, M., and Wells, D. (2021). Holstein Friesian dairy cattle edited for diluted coat color as a potential adaptation to climate change. BMC genomics, 22(856), 1-12. https://doi.org/10.1186/s12864-021-08175-z

Lee, C., Baek, K., and Parkhurst, A. (2016). The impact of hair coat color on longevity of Holstein cows in the tropics. Journal of animal science, 58(41), 1-7. https://doi.org/10.1186/s40781-016-0123-3

Lin, J. Y., and Fisher, D. E. (2007). Melanocyte biology and skin pigmentation. Nature, 445(7130), 843-850. https://doi.org/10.1038/nature05660

Liu, L., Harris, B., Keehan, M., and Zhang, Y. (2009). Genome scan for the degree of white spotting in dairy cattle. Animal genetics, 40(6), 975-977. https://doi.org/10.1111/j.1365-2052.2009.01936.x

Luo, P., Kang, S., Apip, Zhou, M., Lyu, J., Aisyah, S., Binaya, M., Regmi, R. K., and Nover, D. (2019). Water quality trend assessment in Jakarta: A rapidly growing Asian megacity. Plos one, 14(7), e0219009. https://doi.org/10.1371/journal.pone.0219009

Lysyk, T. (2008). Effects of ambient temperature and cattle skin temperature on engorgement of Dermacentor andersoni. Journal of Medical Entomology, 45(6), 1000-1006. https://doi.org/10.1093/jmedent/45.6.1000

Maia, A. S. C., da Silva, R. G., and Bertipaglia, E. C. A. (2005). Environmental and genetic variation of the effective radiative properties of the coat of Holstein cows under tropical conditions. Livestock Production Science, 92(3), 307-315. https://doi.org/10.1016/j.livprodsci.2004.09.004

Maia, A. S. C., da Silva, R. G., Bertipaglia, E. C. A., and Muñoz, M. C. (2005). Genetic variation of the hair coat properties and the milk yield of Holstein cows managed under shade in a tropical environment. Brazilian Journal of Veterinary Research and Animal Science, 42(3), 180-187. https://doi.org/10.11606/issn.1678-4456.bjvras.2005.26429


Mayberry, D., Ash, A., Prestwidge, D., Godde, C. M., Henderson, B., Duncan, A., Blummel, M., Reddy, Y. R., and Herrero, M. (2017). Yield gap analyses to estimate attainable bovine milk yields and evaluate options to increase production in Ethiopia and India. Agricultural Systems, 155, 43-51. https://doi.org/10.1016/j.agsy.2017.04.007

McLean, J., Stombaugh, D., Downie, A., and Glasbey, C. (1983). Body heat storage in steers (Bos taurus) in fluctuating thermal environments. The Journal of Agricultural Science, 100(2), 315-322. https://doi.org/10.1017/S0021859600033463

Nagashima, K. (2006). Central mechanisms for thermoregulation in a hot environment. Industrial health, 44(3), 359-367. https://doi.org/10.2486/indhealth.44.359

Nasution, M., Atabany, A., Purwanto, B., and Zahra, W. (2024). Milk production and morphometrics derived from digital images of Friesian and Holstein cows in different lactation periods. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan, 12(2), 50-59. https://doi.org/10.29244/jipthp.12.2.50-59

Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. Plos one, 10(3), e0118571. https://doi.org/10.1371/journal.pone.0118571

Nurhasan, M., Maulana, A. M., Ariesta, D. L., Usfar, A. A., Napitupulu, L., Rouw, A., Hurulean, F., Hapsari, A., Heatubun, C. D., and Ickowitz, A. (2022). Toward a sustainable food system in West Papua, Indonesia: exploring the links between dietary transition, food security, and forests. Frontiers in Sustainable Food Systems, 5(1), 789186. https://doi.org/10.3389/fsufs.2021.789186

Pragna, P., Archana, P., Aleena, J., Sejian, V., Krishnan, G., Bagath, M., Manimaran, A., Beena, V., Kurien, E., and Varma, G. (2017). Heat stress and dairy cow: impact on both milk yield and composition. International Journal of Dairy Science, 12(1), 1-11. https://doi.org/10.3923/ijds.2016

Putra, T., Panjono, P., Bintara, S., Widayati, D., Baliarti, E., and Putra, B. (2021). Characteristics of skin coat as well as the physiological status of F1 crossing Bali (Bos sondaicus) x Angus (Bos taurus) for early identification of adaptability in tropical environment. MOJ Ecology and Environmental Sciences, 6(3), 82-86. https://doi.org/10.15406/mojes.2021.06.00219

Putri, R., Wibirama, S., Sukamdi, and Giyarsih, S. (2018). Population condition analysis of Jakarta land deformation area. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/148/1/012007

Rachmawati, A., Ni’am Taufiq, M., and Arif, A. A. (2024). The correlation of heat tolerance coefficient (HTC) and temperature humidity index (THI) with milk production of dairy cows in Bangun Lestari Farm, Tulungagung. Journal of Agriprecision Social Impact, 1(2), 147-156. https://doi.org/10.62793/japsi.v1i2.22

Rashid, S. A., Tomar, A. K. S., Verma, M. R., Mehrotra, S., and Bharti, P. K. (2019). Effect of skin and coat characteristics on growth and milk production traits in Tharparkar cattle. Indian Journal of Animal Sciences, 89(11), 1251-1254. https://doi.org/10.56093/ijans.v89i11.95882

Serre, C., Busuttil, V., and Botto, J. (2018). Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. International Journal of Cosmetic Science, 40(4), 328-347. https://doi.org/10.1111/ics.12466

Setiawati, M. D., Jarzebski, M. P., and Fukushi, K. (2022). Extreme heat vulnerability assessment in Indonesia at the provincial level. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/1095/1/012021

Shephard, R., and Maloney, S. (2023). A review of thermal stress in cattle. Australian Veterinary Journal, 101(11), 417-429. https://doi.org/10.1111/avj.13275

Suprayogi, A., Alaydrussani, G., and Ruhyana, A. Y. (2017). Nilai hematologi, denyut jantung, frekuensi respirasi, dan suhu tubuh ternak sapi perah laktasi di Pangalengan. Jurnal Ilmu Pertanian Indonesia, 22(2), 127-132. https://doi.org/10.18343/jipi.22.2.127

Tessalonika, O., Indriani, N. P., and Mansyur, M. (2024). Heat stress response in dairy cattle. Jurnal Ilmu Ternak Universitas Padjadjaran, 24(2), 117-129. https://doi.org/10.24198/jit.v24i2.49083

Videira, I. F. d. S., Moura, D. F. L., and Magina, S. (2013). Mechanisms regulating melanogenesis. Anais Brasileiros de Dermatologia, 88(1), 76-83. https://doi.org/10.1590/S0365-05962013000100009

West, J. W. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 86(6), 2131-2144. https://doi.org/10.3168/jds.S0022-0302(03)73803-X

Wheelock, J. B., Rhoads, R. P., VanBaale, M. J., Sanders, S. R., and Baumgard, L. H. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. Journal of Dairy Science, 93(2), 644-655. https://doi.org/10.3168/jds.2009-2295

Widgerow, A., Wang, J., Ziegler, M., Fabi, S., Garruto, J., Robinson, D., and Bell, M. (2022). Advances in pigmentation management: A multipronged approach. Journal of Drugs in Dermatology, 21(11), 1206-1220. https://doi.org/10.36849/JDD.7013

Wijayanto, A. K., Rushayati, S. B., Hermawan, R., Setiawan, Y., and Prasetyo, L. B. (2020). Jakarta and Surabaya land surface temperature before and during the Covid-19 pandemic. J. Advances in Environmental Sciences, 12(3), 213-221. https://aes.bioflux.com.ro/docs/2020.213-221.pdf

Yamaguchi, Y., Brenner, M., and Hearing, V. J. (2007). The regulation of skin pigmentation. Journal of Biological Chemistry, 282(38), 27557-27561. https://www.jbc.org/article/S0021-9258(20)58649-3/fulltext

Yameogo, B., Andrade, R., Teles Júnior, C., Laud, G., Becciolini, V., Leso, L., Rossi, G., and Barbari, M. (2021). Analysis of environmental conditions and management in a compost-bedded pack barn with tunnel ventilation. Agronomy Research, 19(S2), 1195-1204. https://hdl.handle.net/2158/1238743

Yeck, R., McDowell, R., Bond, T., Doughherty, R., Hazen, T., Johnson, H., Johnston, J., Kelly, C., Pace, N., Smith, S., Ulberg, L., and Wilson, W. (1971). A guide to environmental research on animals (Vol. 1). National Research Council - National Academic of Sciences. https://nap.nationalacademies.org/download/20608



DOI: https://doi.org/10.21059/buletinpeternak.v49i4.110904

Article Metrics

Abstract views : 0 | views : 0

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Sigid Prabowo, Ahmad Yani, Cece Sumantri, Iwan Prihantoro, Ahmad Romadhoni Surya Putra, Ferdian Achmad, Muhammad Pramujo, Poppy Satya Puspita, Serdar Güler

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

    
Copyright (c) 2025 The Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.