Characterisation of Nano-Calcium Citrate from Waste Broiler Chicken Bones Synthesized Using Lime as a Novel Food Supplement

https://doi.org/10.21059/buletinpeternak.v49i3.107958

Agus Hadi Prayitno(1*), Muhammad Syafi’ul Umam(2), Muhammad Riziq Ridho(3), Aisyah Rahmadani Safitri(4), Naufal Alief Roihan(5)

(1) Department of Animal Science, Politeknik Negeri Jember, Jember 68101
(2) Department of Animal Science, Politeknik Negeri Jember, Jember 68101
(3) Department of Animal Science, Politeknik Negeri Jember, Jember 68101
(4) Department of Animal Science, Politeknik Negeri Jember, Jember 68101
(5) Department of Animal Science, Politeknik Negeri Jember, Jember 68101
(*) Corresponding Author

Abstract


Broiler chicken bone calcium oxide is 5.6 g mixed with 20 mL of distilled water. A mixture of 50 mL of lime juice and 30 mL of distilled water was added and then stirred using a hotplate magnetic stirrer at a temperature of 75°C for 30 min at a speed of 500 rpm/min. Ethanol 50% was added to as much as 20 mL (v/v), dried in the sun for 5 d, and then ground using a blender. Parameters observed were particle-size analysis (PSA), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), fourier transform infrared (FTIR), and color. Data from PSA, SEM, EDX, FTIR, and color test results were analyzed descriptively. The research results show that green synthesis with lime can change the particle size of broiler chicken bone calcium into nanoparticles. Lime can be used to synthesize broiler chicken bone calcium into nano-calcium citrate with a particle size of around 524.1 nm. Colorimetric evaluation showed excellent brightness (L* 72.60), minimal redness (a* 3.20), moderate yellowness (b* 15.60), and acceptable whiteness (68.31), demonstrating lime's dual function as both a synthesizing agent and natural purifier. These findings indicate that the lime-mediated synthesis produces high-quality nano-calcium citrate from poultry byproducts, making it a promising candidate for novel food supplement applications.


Keywords


Food supplement, Nano-calcium citrate, Nanotechnology, Broiler Chicken Bone



References

Aminingsih, T., S. Y. S. Rahayu, and Y. Yulianita. 2018. Formulation of instant granule containing nano calcium from the shell of freshwater mussels (Anodonta woodiana) for autism children. Indones. J. Pharm. Sci. Technol. 1:49–56.

Anggraeni, N., E. N. Dewi, A. B. Susanto, and P. H. Riyadi. 2024. Variations in Milling Time and Their Impact on the Bio-Calcium Properties of Red Snapper Fish Bones. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 19:165–173.

Balaganesh, A. S., R. Sengodan, R. Ranjithkumar, and B. Chandarshekar. 2018. Synthesis and characterization of porous calcium oxide nanoparticles (CaO NPS). Int. J. Innov. Technol. Explor. Eng. 2278–3075.

Bitire, S. O., T. C. Jen, and M. Belaid. 2021. Yield Response from the Catalytic Conversion of Parsley Seed Oil into Biodiesel Using a Heterogeneous and Homogeneous Catalyst. ACS Omega. 6:25124–25137.

Clogston, J. D., V. A. Hackley, A. Prina-Mello, S. Puri, S. Sonzini, and P. L. Soo. 2020. Sizing up the Next Generation of Nanomedicines. Pharm. Res. 37:1–18.

Dai, L., C. Li, J. Zhang, and F. Cheng. 2018. Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Carbohydr. Polym. 180:122–127.

Dheyab, M. A., A. A. Aziz, M. S. Jameel, O. A. Noqta, P. M. Khaniabadi, and B. Mehrdel. 2020. Simple rapid stabilization method through citric acid modification for magnetite nanoparticles. Sci. Rep. 10:1–8.

Effendi, S., I. Ahmad, and M. Saleh. 2023. The Analysis of Income of Broiler Chicken Farmers Partnership Pattern At Al-an’Am Farm. J. Agric. 2:35–44.

First, L., L. R. D. Septaningrum, K. Pangestuti, Jufrinaldi, R. Hidayat, and D. Khosilawati. 2019. Sintesis & Karakteristik Nano Kalsium dari Limbah Tulang Ayam Broiler dengan Metode Presipitasi. J. Ilm. Tek. Kim. 3:69–73.

Habte, L., N. Shiferaw, D. Mulatu, T. Thenepalli, R. Chilakala, and J. W. Ahn. 2019. Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability. 11:1–10.

Jahari, A. B., and S. Prihatini. 2014. Risiko Osteoporosis Di Indonesia. Gizi Indones. 30:1–11.

Li, J., Y. Liu, Y. Gao, L. Zhong, Q. Zou, and X. Lai. 2016. Preparation and properties of calcium citrate nanosheets for bone graft substitute. Bioengineered. 7:376–381.

Ningsih, N., T. A. Zulfian, B. M. W. T. Gading, and Zuprizal. 2022. Meat bone ratio (MBR) potongan komersial karkas ayam Broiler dengan nanoenkapsulasi ekstrak buah Mahkota Dewa. J. Sains dan Teknol. Peternak. 3:27–34.

Okfrianti, Y., Kamsiah, and Y. Hartati. 2011. Pengaruh penambahan tepung tulang rawan ayam pedaging terhadap kadar kalsium dan sifat organoleptik stik keju. J.

Sain Peternak. Indones. 6:11–18. Park, S.-Y., D.-S. Byeon, G.-W. Kim, and H.-Y. Kim. 2021. Carcass and retail meat cuts quality properties of broiler chicken meat based on the slaughter age. J. Anim. Sci. Technol. 63:180–190.

Patriani, P., and H. Hafid. 2019. Persentase Boneless, Tulang dan Rasio Daging Tulang Ayam Broiler pada Berbagai Bobot Potong. J. Galung Trop. 8:190–196.

Prayitno, A. H., B. Prasetyo, and A. Sutirtoadi. 2020. Synthesis and characteristics of nano calcium oxide from duck eggshells by precipitation method. IOP Conf. Ser. Earth Environ. Sci. 411:012033.

Prayitno, A. H., T. A. Siswoyo, Y. Erwanto, T. Lindriati, S. Hartatik, J. M. M. Aji, E. Suryanto, and Rusman. 2021. Characterisation of nano-calcium lactate from chicken eggshells synthesized by precipitation method as food supplement. J. Ilmu Ternak dan Vet. 26:139–144.

Ranjan, R., R. K. Sawal, A. Ranjan, and N. V. Patil. 2019. Comparison of calcium absorption from nano- and micro-sized calcium salts using everted gut sac technique. Indian J. Anim. Sci. 89:337–339.

Seftiono, H., G. Y. Panjaitan, and I. H. Sumiasih. 2020. Study of The Effect of Sugar and Lime Juice Proportion on the Quality of Starf Ruit Sorbet. Int. J. Appl. Biol. 4:1–14.

Siswoyo, E., and Gunawan. 2018. Synthesis and characterization hydroxyapatite from calcium oxide (CaO) chicken egg shell with precipitation method. MATTER Int. J. Sci. Technol. 4:40–45.

Souza, S. P. M. C., E. G. Araújo, F. E. Morais, E. V. Santos, M. L. Silva, C. A. Martinez-Huitle, and N. S. Fernandes. 2013. Determination of calcium in tablets containing calcium citrate using thermogravimetry (TG). Brazilian J. Therm. Anal. 2:17–22.

Widarsa, I., I. Darwata, M. Sarmadi, M. Rachmanu, D. Juwita, and L. Pradnyawati. 2018. Association Between Osteoporosis and Age, Physical Activity and Obesity in Elderly of Tulikup Village, Gianyar. WMJ (Warmadewa Med. Journal). 3:33–42.

Wijayanti, I., T. W. Agustini, F. Swastawati, A. D. Anggo, and D. N. Afifah. 2024. Optimization of Catfish (Pangasius sp) Bone Bio-calcium Production w ith Different Concentrations of Citric Acid and Stirring Time Using the Response Surface Method (RSM) Approach. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 19:81–95.

Zufadhillah, S., A. Thaib, and L. Handayani. 2018. Efektivitas penambahan nano CaO cangkang kepiting bakau (Scylla serrata) kedalam pakan komersial terhadap pertumbuhan dan frekuensi molting udang galah (Macrobrachiumrosenbergii). Acta Aquat. 5:69–74.



DOI: https://doi.org/10.21059/buletinpeternak.v49i3.107958

Article Metrics

Abstract views : 1245 | views : 402

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Agus Hadi Prayitno, Muhammad Syafi’ul Umam, Muhammad Riziq Ridho, Aisyah Rahmadani Safitri, Naufal Alief Roihan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

    
Copyright (c) 2025 The Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.