PyPLIF HIPPOS-aided construction and retrospective validation of structure-based virtual screening protocol targeting VEGFR2

  • supanji supanji Faculty of medicine, Public Health, and Nurse
  • Ayudha Bahana Perdamaian Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada – Dr. Sardjito General Hospital, Yogyakarta, Indonesia
  • Titi Marsifah Master Program of Health and Medicine Science, Faculty of Medicine, Public Health, and Nurse, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Riris Istighfari Jenie
  • Muthi Ikawati
  • Dewi Kartikawati Paramita Department of Histology and Molecular Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
  • Enade Perdana Istyastono Faculty of Pharmacy, Sanata Dharma University, Yogyakarta, Indonesia
Keywords: VEGFR2, PyPLIF HIPPOS, machine learning, short peptide

Abstract

Recently, the discovery of small molecules as inhibitors for vascular endothelial growth factor receptor 2 (VEGFR2) is of timely interest, especially in the area of ocular neovascular diseases. On the other hand, PyPLIF HIPPOS in combination with machine learning techniques has been reported to increase the prediction quality of structure-based virtual screening (SBVS) protocols. The original version of PyPLIF has served in the development of an SBVS protocol that successfully identified novel chalcone derivatives and short peptides as potent inhibitors for acetylcholinesterase. In this short communication, construction and retrospective validation of an SBVS protocol employing PyPLIF HIPPOS targeting VEGFR2 are presented to make it publicly available. The retrospective validation employed 409 active compounds and 24,950 decoys from the enhanced version of the directory of useful decoys. All compounds were docked independently 3 times using AutoDock Vina followed by the identification of the protein-ligand interaction fingerprints (PLIF) employing PyPLIF HIPPOS. The derived ensemble PLIF descriptors were then used in the decision tree construction using a machine-learning technique called recursive partitioning and regression trees. The best decision was then incorporated in the SBVS protocol. The F-measure and enrichment factor values of the SBVS protocol were 0.387 and 76.879, respectively. Hence, the SBVS protocol is readily available to screen small molecules or short peptides.

References

Cannon, E. O., Amini, A., Bender, A., Sternberg, M. J. E., Muggleton, S. H., Glen, R. C., & Mitchell, J. B. O. (2007). Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds. J. Comput. Aided Mol. Des., 21(5), 269–280.
Cappel, D., Dixon, S. L., Sherman, W., & Duan, J. (2015). Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling. J. Comput. Aided Mol. Des., 29(2), 165–182.
Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 61(8), 3891–3898.
Fu, Y. C., & Xin, Z. M. (2019). Inhibited corneal neovascularization in rabbits following corneal alkali burn by double-target interference for VEGF and HIF-1α. Biosci. Rep., 39(1), 20180552.
Gentile, F., Oprea, T. I., Tropsha, A., & Cherkasov, A. (2023). Surely you are joking, Mr Docking! Chem. Soc. Rev., 52(3), 872–878.
Gorgulla, C. (2023). Annual review of biomedical data science recent developments in ultralarge and structure-based virtual screening approaches. Annu. Rev. Biomed. Data Sci., 10(6), 229–258.
Istyastono, E. P., Kooistra, A. J., Vischer, H., Kuijer, M., Roumen, L., Nijmeijer, S., Smits, R., de Esch, I., Leurs, R., & de Graaf, C. (2015). Structure-based virtual screening for fragment-like ligands of the G protein-coupled histamine H4 receptor. Med. Chem. Commun., 6(6), 1003–1017.
Istyastono, E. P., Radifar, M., Yuniarti, N., Prasasty, V. D., & Mungkasi, S. (2020). PyPLIF HIPPOS: A molecular interaction fingerprinting tool for docking results of AutoDock Vina and PLANTS. J. Chem. Inf. Model., 60(8), 3697–3702.
Istyastono, E. P., Riswanto, F. D. O., Yuniarti, N., Prasasty, V. D., & Mungkasi, S. (2022). PyPLIF HIPPOS and receptor ensemble docking increase the prediction accuracy of the structure-based virtual screening protocol targeting acetylcholinesterase. Molecules, 27(5661), 1–9.
Jiang, D., Xu, T., Zhong, L., Liang, Q., Hu, Y., Xiao, W., & Shi, J. (2023). Research progress of VEGFR small molecule inhibitors in ocular neovascular diseases. Eur. J. Med. Chem., 257(115535), 1–20.
Kooistra, A. J., Leurs, R., de Esch, I. J. P., & de Graaf, C. (2015). Structure-based prediction of g-protein-coupled receptor ligand function: A β-adrenoceptor case study. J. Chem. Inf. Model., 55(5), 1045–1061.
Kooistra, A. J., Roumen, L., Leurs, R., de Esch, I. J. P., & de Graaf, C. (2013). From heptahelical bundle to hits from the haystack: structure-based virtual screening for GPCR ligands. Methods Enzymol., 522, 279–336.
Krieger, E., & Vriend, G. (2015). New ways to boost molecular dynamics simulations. J. Comput. Chem., 36(13), 996–1007.
Mabeta, P., & Steenkamp, V. (2022). The VEGF/VEGFR axis revisited: Implications for cancer therapy. Int. J. Mol. Sci., 23(24), 15585.
Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of Useful Decoys, Enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem., 55(14), 6582–6594.
Prasasty, V. D., & Istyastono, E. P. (2019). Data of small peptides in SMILES and three-dimensional formats for virtual screening campaigns. Data in Brief, 27(2019), 104607.
Prasasty, V. D., & Istyastono, E. P. (2020). Structure-based design and molecular dynamics simulations of pentapeptide AEYTR as a potential acetylcholinesterase inhibitor. Indones. J. Chem., 20(4), 953–959.
Prasasty, V., Radifar, M., & Istyastono, E. (2018). Natural peptides in drug discovery targeting acetylcholinesterase. Molecules, 23(9), 2344.
Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J., & Sanner, M. F. (2015). AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility. PLoS Comput. Biol., 11(12), 1–28.
Shu-Ya, T., Qiu-Yang, Z., Jing-Jing, L., Jin, Y., & Biao, Y. (2020). Suppression of pathological ocular neovascularization by a small molecule, SU1498. Biomed. Pharmacother., 128(110248), 1–8.
Stein, R. M., Yang, Y., Balius, T. E., O’Meara, M. J., Lyu, J., Young, J., Tang, K., Shoichet, B. K., & Irwin, J. J. (2021). Property-unmatched decoys in docking benchmarks. J. Chem. Inf. Model., 61(2), 699–714.
Therneau, T., Atkinson, B., & Ripley, B. (2015). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-9. Retrieved from http://CRAN.R-project.org/package=rpart.
Wang, D. D., Chan, M. T., & Yan, H. (2021). Structure-based protein–ligand interaction fingerprints for binding affinity prediction. In Comput. Struct. Biotechnol. J. (Vol. 19, pp. 6291–6300). Elsevier B.V.
Yuniarti, N., Mungkasi, S., Yuliani, S. H., & Istyastono, E. P. (2019). Development of a graphical user interface application to identify marginal and potent ligands for estrogen receptor alpha. Indones. J. Chem., 19(2), 531–537.
Zhao, X., & Nie, X. (2022). Status forecasting based on the baseline Information using logistic regression. Entropy, 24(1481), 1–9
Published
2024-01-16
How to Cite
supanji, supanji, Perdamaian, A. B., Marsifah, T., Istighfari Jenie, R., Ikawati, M., Kartikawati Paramita, D., & Perdana Istyastono, E. (2024). PyPLIF HIPPOS-aided construction and retrospective validation of structure-based virtual screening protocol targeting VEGFR2. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.9820
Section
Short Communication

Most read articles by the same author(s)