Antiplasmodial Activity, Isolation and Structure Elucidation of Steroid Compound from Sponge Hyrtios reticulatus
Abstract
Hyrtios reticulatus is a type of sponge that has antiplasmodial activity against Plasmodium falciparum 3D7 and FCR3 variants. However, there has never been a report on the isolation of antiplasmodial substances from Hyrtios reticulatus. The objective of this research was to isolate and structure elucidation of antiplasmodial compound from Hyrtios reticulatus. The chloroform fraction from ethanol extract was partitioned by column chromatography with a ratio of n-hexane to ethyl acetate of 5:5 v/v and was purified using preparative thin-layer chromatography. Then the result was identified and characterised using spectroscopic method. The antiplasmodial activity was studied in vitro against Plasmodium falciparum 3D7 and FCR3 using micro method. The purified compound was white crystal with (λmaks) at 235 nm and was identified with UV-vis spectroscopy. The infrared spectrum showed that the isolate had functional hydroxyl (OH) groups, aliphatic C-H bond, C-O bond, vanillic C-H bond, and carbon-carbon double bonds (C=C). The result of the mass spectrometry analysis of the purified compound showed a molecular weight of 414 g/mol. The H-NMR, C-NMR, DEPT, COSY and HMBC spectrum and the spectral analysis revealed the presence of a compound of β-sitosterol and it had antiplasmodial activity against Plasmodium falciparum 3D7 and FCR3 with IC50 17.76 ± 2.86 µg/ml and 12.03 ± 1.60 µg/ml.
References
Alves, U. V., Jardim e Silva, E., dos Santos, J. G., Santos, L. O., Lanna, E., de Souza Pinto, A. C., Luisa da Fonseca, A., de Pilla Varotti, F., & Batista, R. (2021). Potent and selective antiplasmodial activity of marine sponges from Bahia state, Brazil. International Journal for Parasitology: Drugs and Drug Resistance, 17(June), 80–83. https://doi.org/10.1016/j.ijpddr.2021.08.002
Babu, S., & Jayaraman, S. (2020). An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine and Pharmacotherapy, 131, 110702. https://doi.org/10.1016/j.biopha.2020.110702
Beesoo, R., Bhagooli, R., Neergheen-Bhujun, V. S., Li, W. W., Kagansky, A., & Bahorun, T. (2017). Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 196(February), 81–90. https://doi.org/10.1016/j.cbpc.2017.04.001
Chaniad, P., Phuwajaroanpong, A., Techarang, T., Viriyavejakul, P., Chukaew, A., & Punsawad, C. (2022). Antiplasmodial activity and cytotoxicity of plant extracts from the Asteraceae and Rubiaceae families. Heliyon, 8(1), e08848. https://doi.org/10.1016/j.heliyon.2022.e08848
De Voogd, N. J. (2007). An assessment of sponge mariculture potential in the Spermonde Archipelago, Indonesia. Journal of the Marine Biological Association of the United Kingdom, 87(6), 1777–1784. https://doi.org/10.1017/S0025315407057335
Gupta, N., Vishnoi, G., Wal, A., & Wal, P. (2013). Antimalarials From Semisynthetic Origin. Pharma Science Monitor, 4(3), 376–405.
Hikmawan, B. D., Wahyuono, S., & Setyowati, E. P. (2020). Marine sponge compounds with antiplasmodial properties: Focus on in vitro study against Plasmodium falciparum. Journal of Applied Pharmaceutical Science, 10(5), 142–157. https://doi.org/10.7324/JAPS.2020.10519
Inbaneson, S. J., & Ravikumar, S. (2012). In vitro antiplasmodial activity of bacterium RJAUTHB 14 associated with marine sponge Haliclona Grant against Plasmodium falciparum. Parasitology Research, 110(6), 2255–2262. https://doi.org/10.1007/s00436-011-2757-x
Inman, W. D., Bray, W. M., Gassner, N. C., Lokey, R. S., Tenney, K., Shen, Y. Y., Tendyke, K., Suh, T., & Crews, P. (2010). A β-Carboline Alkaloid from the Papua New Guinea Marine Sponge Hyrtios reticulatus. Journal of Natural Products, 73, 255–257.
Ju, E., Latif, A., Kong, C. S., Seo, Y., Lee, Y. J., Dalal, S. R., Cassera, M. B., & Kingston, D. G. I. (2018). Antimalarial activity of the isolates from the marine sponge Hyrtios erectus against the chloroquine-resistant Dd2 strain of Plasmodium falciparum. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 73(9–10), 397–400. https://doi.org/10.1515/znc-2018-0025
Kamal, N., Clements, C., Gray, A. I., & Edrada-Ebel, R. A. (2016). Anti-infective activities of secondary metabolites from Vitex pinnata. Journal of Applied Pharmaceutical Science, 6(1), 102–106. https://doi.org/10.7324/JAPS.2016.600117
Kumar, S. C. M. (2017). Drug resistance in malaria. Drug Resistance in Bacteria, Fungi, Malaria, and Cancer, July, 429–447. https://doi.org/10.1007/978-3-319-48683-3_19
Luhata, L. (2015). Isolation and characterisation of Stigmasterol and B-Sitosterol from odontonema strictum (acanthaceae). Journal of Innovations in Pharmaceuticals and Biological Sciences, 2(1), 88–96. https://doi.org/10.13140/RG.2.1.3689.7365
Mahfur, M., Setyowati, E. P., Wahyuono, S., & Purwantini, I. (2022). Sponge Hyrtios reticulatus : Phytochemicals and Bioactivities. Research J. Pharm. and Tech., 15(June), 1–7.
Mahfur, M., Wahyuono, S., Purwantini, I., & Setyowati, E. P. (2022). In vitro antiplasmodial activities of the fractions of Hyrtios reticulatus sponge extract. Journal of Applied Pharmaceutical Science, 12(9), 114–120. https://doi.org/10.7324/JAPS.2022.120913
Murtihapsari, M., Salam, S., Kurnia, D., Darwati, D., Kadarusman, K., Abdullah, F. F., Herlina, T., Husna, M. H., Awang, K., Shiono, Y., Azmi, M. N., & Supratman, U. (2019). A new antiplasmodial sterol from Indonesian marine sponge, Xestospongia sp. Natural Product Research, 0(0), 1–8. https://doi.org/10.1080/14786419.2019.1611815
Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806
Ozaki, K., Iwasaki, A., Sezawa, D., Fujimura, H., Nozaki, T., Saito-Nakano, Y., Suenaga, K., & Teruya, T. (2019). Isolation and Total Synthesis of Mabuniamide, a Lipopeptide from an Okeania sp. Marine Cyanobacterium. Journal of Natural Products, 82(10), 2907–2915. https://doi.org/10.1021/acs.jnatprod.9b00749
Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2001). Spectroscopy 4th Ed.
Permatasari, L., Riyanto, S., & Rohman, A. (2021). β-Sitosterol: The Isolated Compound from n-Hexane Fraction of Baccaurea racemose (Reinw. Ex Blume) Mŭll. Arg. Pulp and Its Antioxidant Activity. J.Chemom.Pharm.Anal, 2021(3), 156–163. www.journal.ugm.ac.id/v3/IJCPA
Philip, K., Cheplogoi, P. K., Elizabeth, M. M., Hoseah, M. A., & Langat, M. K. (2019). Assessment of Antiplasmodial Activity and Toxicity of Crude Extracts and Isolated Compounds from Oncoba spinosa (Flacourtiaceae). Journal of Advances in Medical and Pharmaceutical Sciences, 21(1), 1–14. https://doi.org/10.9734/jamps/2019/v21i130124
Rashed, K. (2020). Beta-Sitosterol Medicinal Properties: a Review Article. Int. J Sci Inv Tod, 9(4), 208–212. www.ijsit.com
Shady, N. H., El-hossary, E. M., Fouad, M. A., Gulder, T. A. M., Kamel, M. S., & Abdelmohsen, U. R. (2017). Bioactive Natural Products of Marine Sponges from the Genus Hyrtios. Molecules, 22(5), 781–802. https://doi.org/10.3390/molecules22050781
Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric Identification of Organic Compounds 7th ed (7th editio).
Simamora, D., & Fitri, L. E. (2007). Antimalarial Drug Resistance : Mechanism and the Role of Drug. Kedokteran Brawijaya, 23(2), 82–92.
Singh, A., & Thakur, N. L. (2021). Allelopathic interaction among rocky intertidal invertebrates: sponge Cinachyrella cf. cavernosa and Zooxanthellate zoanthids Zoanthus sansibaricus. Hydrobiologia, 848(19), 4647–4659. https://doi.org/10.1007/s10750-021-04667-x
Taşdemir, D., Bugni, T. S., Mangalindan, G. C., Concepción, G. P., Harper, M. K., & Ireland, C. M. (2003). Bisabolane type sesquiterpenes from a marine Didiscus sponge. Turkish Journal of Chemistry, 27(2), 273–279.
Trager, W., & Jensen, J. B. (1997). Continuous culture of Plasmodium falciparum: Its impact on malaria research. International Journal for Parasitology, 27(9), 989–1006. https://doi.org/10.1016/S0020-7519(97)00080-5
Wahdaningsih, S., Wahyuono, S., Riyanto, S., & Murwanti, R. (2021). Β -Sitosterol of Red Dragon Fruit ( Hylocereus Polyrhizus ) And Its Response to Macrophage And Nitric Oxide. Indonesian Journal of Pharmacy, 32(3), 399–407.
World Health Organization. (2022). World Malaria Report 2022. In World Health: Vol. WHO/HTM/GM (Issue December). https://doi.org/ISBN 978 92 4 1564403