Comparative Cellular and In Vivo Anti-cancer studies of Doxorubicin Liposomes Prepared with Different Types of Phospholipids

  • Andang Miatmoko Faculty of Pharmacy, Airlangga University
  • Devy Maulidya Cahyani
  • Kumi Kawano
  • Yoshiyuki Hattori
Keywords: Cancer, liposome, doxorubicin, rapid release, phosphatidylcholine

Abstract

The selection of lipid components of membrane bilayer determines the rigidity of liposomes affecting drug efficacy, especially for cancer drug delivery. The present study evaluated liposomes with different rigidity for delivering doxorubicin (DOX). In this work, liposomes composed of rigid lipid, hydrogenated soybean phosphatidylcholine (HSPC), were totally or partially substituted with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). The liposomes are composed of phosphatidylcholine (HSPC, POPC), with and without combination with DOPE, cholesterol, and DSPE-mPEG2000 with a molar ratio of 57: 38: 5, respectively. Liposomes were prepared using a thin layer hydration method. Then, in vitro cytotoxicity and in vivo antitumor activity of these liposomes were evaluated.  Substitution of HSPC with POPC resulted in similar cytotoxicities profiles similar to the DOX solution on C26 colon cancer cells and LLC cells. The DOPE addition to DOX liposomes reduced the antitumor activity. In conclusion, the lipid substitution of HSPC with POPC or DOPE reduced liposome rigidity; however, it lowered the in vivo antitumor activity.The abstract should briefly summarize the problem or purpose of the research, the theoretical or experimental method

References

Akbarzadeh, A., Rezaei-sadabady, R., Davaran, S., Joo, S. W., & Zarghami, N. (2013). Liposome: classification, preparation, and applications. Nanoscale Research Letters, 8, 1–9.
Alrushaid, S., Sayre, C. L., Yáñez, J. A., Forrest, M. L., Senadheera, S. N., Burczynski, F. J., Löbenberg, R., & Davies, N. M. (2017). Pharmacokinetic and toxicodynamic characterization of a novel doxorubicin derivative. Pharmaceutics, 9(3), 2–19. doi: 10.3390/pharmaceutics9030035
Barenholz, Y. (2007). Amphipathic weak base loading into preformed liposomes having a transmembrane ammonium ion gradient: From the bench to approved doxil. In Liposome technology third edition: Entrapment of drugs and other materials into liposomes volume II (Vol. 2, pp. 1–26). doi: 10.1017/CBO9781107415324.004
Barenholz, Y. C. (2012). Doxil - The First FDA-approved nanodrug: from an idea to a product. In Handbook of Harnessing Biomaterials in Nan (pp. 335–398).
Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A., Kostić, I., Komes, D., Bugarski, B., & Nedović, V. (2014). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7(4), 452–490. doi: 10.1007/s12393-014-9106-7
Drummondy, D. C., Hayes, M. E., IV, C. O. N., & Kirpotin, D. B. (2007). Intraliposomal trapping agents for improving in vivo liposomal drug formulation stability. in liposome technology: Entrapment of drugs and other materials into liposomes (pp. 149–168).
Eldin, N. E., Abu Lila, A. S., Kawazoe, K., Elnahas, H. M., Mahdy, M. A., & Ishida, T. (2016). Encapsulation in a rapid-release liposomal formulation enhances the anti-tumor efficacy of pemetrexed in a murine solid mesothelioma-xenograft model. European Journal of Pharmaceutical Sciences, 81, 60–66. doi: 10.1016/j.ejps.2015.09.015
Eldin, N. E., Elnahas, M., Mahdy, M. A., & Ishida, T. (2015). Liposomal pemetrexed : Formulation, characterization and in vitro cytotoxicity studies for effective management of malignant pleural. Biological & Pharmaceutical Bulletin, 38(March), 461–469. doi: 10.1248/bpb.b14-00769
Fang, J., Nakamura, H., & Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 63(3), 136–151. doi: 10.1016/j.addr.2010.04.009
Gubernator, J. (2011). Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opinion on Drug Delivery, 8(5), 565–580. doi: 10.1517/17425247.2011.566552
Lee, Y., & Thompson, D. H. (2017). Stimuli-responsive liposomes for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(5). doi: 10.1002/wnan.1450
Liang, J., Lu, T., Chen, Z., Zhan, C., & Wang, Q. (2019). Mechanisms of resistance to pemetrexed in non-small cell lung cancer. Translational Lung Cancer Research, 8(6), 1107–1118. doi: 10.21037/tlcr.2019.10.14
McGowan, J. V., Chung, R., Maulik, A., Piotrowska, I., Walker, J. M., & Yellon, D. M. (2017). Anthracycline chemotherapy and cardiotoxicity. Cardiovascular Drugs and Therapy, 31(1), 63–75. doi: 10.1007/s10557-016-6711-0
Miatmoko, A., Kawano, K., Yoda, H., Yonemochi, E., & Hattori, Y. (2017). Tumor delivery of liposomal doxorubicin prepared with poly-L-glutamic acid as a drug-trapping agent. Journal of Liposome Research, 27(2), 99–107. doi: 10.3109/08982104.2016.1166511
Miatmoko, A., Nurjannah, I., Nehru, N. F., Rosita, N., Hendradi, E., Sari, R., & Ekowati, J. (2021). Interactions of primaquine and chloroquine with PEGylated phosphatidylcholine liposomes. Scientific Reports, 11(1), 1–12. doi: 10.1038/s41598-021-91866-0
Nele, V., Holme, M. N., Kauscher, U., Thomas, M. R., Doutch, J. J., & Stevens, M. M. (2019). Effect of formulation method, lipid composition, and pegylation on vesicle lamellarity: A small-angle neutron scattering study. Langmuir, 35(18), 6064–6074. doi: 10.1021/acs.langmuir.8b04256
Pangeni, R., Choi, J. U., Panth, V. K., Byun, Y., & Park, J. W. (2018). Enhanced oral absorption of pemetrexed by ion-pairing complex formation with deoxycholic acid derivative and multiple nanoemulsion formulations: Preparation, characterization, and in vivo oral bioavailability and anticancer effect. International Journal of Nanomedicine, 13, 3329–3351. doi: 10.2147/IJN.S167958
Seynhaeve, A. L. B., Dicheva, B. M., Hoving, S., Koning, G. A., & Hagen, T. L. M. (2013). Intact Doxil is taken up intracellularly and released doxorubicin sequesters in the lysosome : Evaluated by in vitro/in vivo live cell imaging. Journal of Controlled Release, 172(1), 330–340. doi: 10.1016/j.jconrel.2013.08.034
Seynhaeve, A. L. B., & Hagen, T. L. M. (2017). Using In Vitro Live-cell Imaging to Explore Chemotherapeutics Delivered by Lipid-based Nanoparticles. Journal of Visualized Experiments, 129(November), 1–12. doi: 10.3791/55405
Yang, W., Yang, Z., Fu, J., Guo, M., Sun, B., Wei, W., Liu, D., & Liu, H. (2019). The influence of trapping agents on the antitumor efficacy of irinotecan liposomes: head-to-head comparison of ammonium sulfate, sulfobutylether-β-cyclodextrin and sucrose octasulfate. Biomaterials Science, 7, 419–428. doi: 10.1039/c8bm01175c
Yingchoncharoen, P., Kalinowski, D. S., & Richardson, D. R. (2016). Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacological Reviews, 68(3), 701–787. doi: 10.1124/pr.115.012070
Zhao, N., Woodle, M. C., & Mixson, A. J. (2018). Advances in delivery systems for doxorubicin. Journal of Nanomedicine & Nanotechnology, 9(5), 1–9. doi: 10.4172/2157-7439.1000519
Published
2024-06-25
How to Cite
Miatmoko, A., Cahyani, D. M., Kawano, K., & Hattori, Y. (2024). Comparative Cellular and In Vivo Anti-cancer studies of Doxorubicin Liposomes Prepared with Different Types of Phospholipids . Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.9734
Section
Articles