Antiinflammatory and Antimelanogenic Effects of Xylocarpus granatum J. Koenig Leaf Extract Cream on UVB Radiation-Induced Sunburn in Guinea Pigs

  • I Gusti Agung Ayu Kusuma Wardani Department of Pharmacology, Faculty of Medicine, Universitas Udayana, Bali, 80234, Indonesia; Departement of Pharmacology, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Bali, 80233, Indonesia.
  • Tjok Gde Agung Senapathi Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Universitas Udayana, Bali, 80234, Indonesia.
  • Bagus Komang Satriyasa Department of Pharmacology, Faculty of Medicine, Universitas Udayana, Bali, 80234, Indonesia.
  • Agung Wiwiek Indrayani Department of Pharmacology, Faculty of Medicine, Universitas Udayana, Bali, 80234, Indonesia.
  • I Gusti Kamasan Nyoman Arijana Department of Histology, Faculty of Medicine, Universitas Udayana, Bali, 80234, Indonesia
Keywords: antiinflammatory, antimelanogenic, antioxidant, cream, Xylocarpus granatum leaf

Abstract

Xylocarpus granatum J. Koenig is a medical mangrove plant predominantly found in tropical and subtropical coastal regions, including Indonesia. The plant contains bioactive compounds such as flavonoids, tannins, saponins and steroids, which exhibit antioxidant, antiinflammatory and antimelanogenic effects. This study was aims to determine the antiinflammatory and antimelanogenesis effect of Xylocarpus granatum leaf ethanol extract cream. The compounds of Xylocarpus granatum leaf ethanol extract was identified by using gas chromatography-mass spectrometry. The potential of the extract as a sunscreen was evaluated through the analysis of sun protection factor (SPF) value. The antioxidant activity of the extract was assessed using the DPPH method. The antiinflammatory and antimelanogenic effects of cream were evaluated through histopathological analysis of epidermal thickness and melanin levels in ultraviolet B (UVB)-exposed ginea pig skin. The Xylocarpus granatum leaf extract was found to contain 16 compounds, of which 11 compounds were identified as antioxidant, antiinflammatory, and/or antimelanogenic. The Xylocarpus granatum leaf extract exhibited a high level of sun protection with an SPF value of 35.56. Additionally, the extract displayed strong antioxidant activity, as indicated by an IC50 value of 64,57 ppm. Treatment with 10% Xylocarpus granatum leaf extract cream significantly reduced epidermal thickness (p-value = 0.165), while 15% Xylocarpus granatum leaf extract cream showed a significant decrease in melanin levels (p-value = 0.828) compared to the hydroquinone treatment. This study concluded that Xylocarpus granatum leaf extract exhibit as a potential source for the development of health-related products, particularly those involving antioxidant, antiinflammatory and antimelanogenic properties.

Author Biographies

Tjok Gde Agung Senapathi, Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Universitas Udayana, Bali, 80234, Indonesia.

Department of Anesthesiology and Intensive Therapy, Faculty of Medicine

Bagus Komang Satriyasa, Department of Pharmacology, Faculty of Medicine, Universitas Udayana, Bali, 80234, Indonesia.

Department of Pharmacology, Faculty of Medicine

Agung Wiwiek Indrayani, Department of Pharmacology, Faculty of Medicine, Universitas Udayana, Bali, 80234, Indonesia.

Department of Pharmacology, Faculty of Medicine, Universitas Udayana, Bali, 80234, Indonesia.

References

Abdel-Hady, H., El-Wakil, E. A., & Abdel-Gawad, M. (2018). GC-MS Analysis, Antioxidant and Cytotoxic Activities of Mentha spicata. European Journal of Medicinal Plants, 26(1), 1–12. https://doi.org/10.9734/ejmp/2018/45751
Acevedo, J. G. A., González, A. M. E., Campos, D. M. D. M. y., Flores, J. del C. B., Delgado, T. H., Maya, S. F., Contreras, J. C., López, J. L. M., & Bores, A. M. G. (2014). Photoprotection of Buddleja cordata extract against UVB-induced skin damage in SKH-1 hairless mice. BMC Complementary and Alternative Medicine, 14(1), 1–9. https://doi.org/10.1186/1472-6882-14-281
Agada, R., Usman, W. A., Shehu, S., & Thagariki, D. (2020). In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes. Heliyon, 6(3). https://doi.org/10.1016/j.heliyon.2020.e03618
Ahmad, Z., Hasham, R., Aman Nor, N. F., & Sarmidi, M. R. (2015). Physico-Chemical and Antioxidant Analysis of Virgin Coconut Oil Using West African Tall Variety. Journal of Advanced Research in Materials Science ISSN, 13(1), 1–10.
Ali, A., Khan, N., Qadir, A., Warsi, M. H., Ali, A., & Tahir, A. (2022). Identification of the Phytoconstituents in Methanolic Extract of Adhatoda Vasica L. Leaves by GC-MS Analysis and Its Antioxidant Activity. Journal of AOAC International, 105(1), 267–271. https://doi.org/10.1093/jaoacint/qsab113
Bais, A. F., Lucas, R. M., Bornman, J. F., Williamson, C. E., Sulzberger, B., Austin, A. T., Wilson, S. R., Andrady, A. L., Bernhard, G., McKenzie, R. L., Aucamp, P. J., Madronich, S., Neale, R. E., Yazar, S., & Young, A. R. (2018). Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochemical and Photobiological Sciences, 17(2), 127–179. https://doi.org/10.1039/c7pp90043k
Blois, M. S. (1958). Antioxidant determination by the use of stable free radicals. Nature, 181 (4617), 1199–2000.
Coelho, M. M. V. (2016). The dark side of the light: Phototherapy adverse effects. Clinics in Dermatology, 34(5), 556–562. https://doi.org/10.1016/j.clindermatol.2016.05.005
Communities, E. (2006). The Efficacy of Sunscreen Products and The Claims Made Relating Thereto. Journal of the European Union, 1–5.
Cruz, G. A., López, A. L., Gómez, V. C., Alvarado, R. J., & Álvarez, G. A. (2020). Collagen hydrolysates for skin protection: Oral administration and topical formulation. Antioxidants (MDPI), 9(2), 2–17. https://doi.org/10.3390/antiox9020181
Darmadi, J., Batubara, R. R., Himawan, S., Azizah, N. N., Audah, H. K., Arsianti, A., Kurniawaty, E., Ismail, I. S., Batubara, I., & Audah, K. A. (2021). Evaluation of Indonesian mangrove Xylocarpus granatum leaves ethyl acetate extract as potential anticancer drug. Nature, 11(1), 1–18. https://doi.org/10.1038/s41598-021-85383-3
Dey, D., Quispe, C., Hossain, R., Jain, D., Ahmed Khan, R., Janmeda, P., Islam, M. T., Ansar Rasul Suleria, H., Martorell, M., Daştan, S. D., Kumar, M., Taheri, Y., Petkoska, A. T., & Sharifi-Rad, J. (2021). Ethnomedicinal Use, Phytochemistry, and Pharmacology of Xylocarpus granatum J. Koenig. Evidence-Based Complementary and Alternative Medicine, 1–16. https://doi.org/10.1155/2021/8922196
Dinardo, J. C., & Downs, C. A. (2018). Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone-3. Journal of Cosmetic Dermatology, 17(1), 15–19. https://doi.org/10.1111/jocd.12449
Divya, S. P., Wang, X., Pratheeshkumar, P., Son, Y. O., Roy, R. V., Kim, D., Dai, J., Hitron, J. A., Wang, L., Asha, P., Shi, X., & Zhang, Z. (2015). Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin. Toxicology and Applied Pharmacology, 284(1), 92–99. https://doi.org/10.1016/j.taap.2015.02.003
Dorai, A. A. (2012). Wound care with traditional, complementary and alternative medicine. Indian Journal of Plastic Surgery, 45(2), 418–424. https://doi.org/10.4103/0970-0358.101331
D’Orazio, J. A. (2015). The Role of MC1R in Melanocytic UV-induced DNA Demage and Repair Responses. Lexington.
D’Orazio, J., Jarret, S., Ortiz, A. A., & Scott, T. (2013). UV Radiation and The Skin. Int J Mol Sci, 14(6).
Dubo, A. B., Dawud, F. A., Umar, I. A., Alex, E. A., Baiyekusi, S., & Farra, U. (2019). Lauric Acid Alleviates Inflammation and Structural Changes in the Lungs of Type II Diabetic Male Wistar Rats. Journal of African Association of Physiological Sciences Official Publication of the African Association of Physiological Sciences, 7(2), 88–96. http://www.jaaps.aapsnet.org
Fan, Z. W., Pang, Y. X., Wang, K., Yu, F. L., Wang, D., Yang, Q., Ma, Q. S., Li, X. T., Zou, J., Zhang, W. Q., & Wu, L. F. (2015). Blumea balsamifera oil for the acceleration of healing of burn injuries. Molecules, 20(9), 17166–17179. https://doi.org/10.3390/molecules200917166
Feng, H.-L., Tian, L., Chai, W.-M., Chen, X.-X., Shi, Y., Gao, Y.-S., Yan, C.-L., & Chen, Q.-X. (2014). Isolation and Purification of Condensed Tannins from Flamboyant Tree and Their Antioxidant and Antityrosinase Activities. Applied Biochemistry and Biotechnology, 173(1), 179–192. https://doi.org/10.1007/s12010-014-0828-z
Ferreira, D. A. O., Melo, de P. B., Saito, P., Iwanaga, C., Nakamura, C. V, Casagrande, R., & Maria, da C. T. T. (2020). Nectandra cuspidata fraction and the isolated polyphenols protect fibroblasts and hairless mice skin from UVB-induced inflammation and oxidative stress. Journal of Photochemistry and Photobiology B: Biology, 205, 3–4. https://doi.org/10.1016/j.jphotobiol.2020.111824
Frank, J. M. Y. (2021). Skin pigmentation and its control: From ultraviolet radiation to stem cells. Experimental Dermatology, 30(4), 560–571. https://doi.org/10.1111/exd.14260
Gazali, M., Neviaty, P. Z., & Batubara, I. (2014). Potensi limbah kulit buah Nyirih Xylocarpus granatum sebagai inhibitor tirosinase. Jurnal Ilmu-Ilmu Perairan, Pesisir Dan Perikanan, 3(3), 187–194. https://doi.org/https://doi.org/10.13170/depik.3.3.5711
Guan, L. L., Lim, H. W., & Mohammad, T. F. (2021). Sunscreens and Photoaging: A Review of Current Literature. American Journal of Clinical Dermatology, 22(6), 819–828. https://doi.org/10.1007/s40257-021-00632-5
Ha, S. Y., Jung, J. Y., & Yang, J. K. (2021). Camellia japonica Essential Oil Inhibits α -MSH-Induced Melanin Production and Tyrosinase Activity in B16F10 Melanoma Cells. Evidence-Based Complementary and Alternative Medicine, 1–8. https://doi.org/10.1155/2021/6328767
Hayley, A. B., Colin, H. A., Michael, G., & Howa, Y. (2021). Sunburn frequency and risk and protective factors: a cross-sectional survey . Dermatol Online J, 27(4), 1–9.
Hida, T., Kamiya, T., Kawakami, A., Ogino, J., Sohma, H., Uhara, H., & Jimbow, K. (2020). Elucidation of melanogenesis cascade for identifying pathophysiology and therapeutic approach of pigmentary disorders and melanoma. International Journal of Molecular Sciences, 21(17), 1–23. https://doi.org/10.3390/ijms21176129
Hong, Y. H., Kim, J. H., & Cho, J. Y. (2020). Photoaging Protective Effects of Ranunculus bulumei Methanol Extract. Evidence-Based Complementary and Alternative Medicine, 2020, 1–11. https://doi.org/10.1155/2020/1761785
Horrell, E. M. W., Boulanger, M. C., & D’Orazio, J. A. (2016). Melanocortin 1 receptor: Structure, function, and regulation. Frontiers in Genetics, 7, 1–16. https://doi.org/10.3389/fgene.2016.00095
Idana, F., Wiraguna, A. A. G. P., & Winarti, N. W. (2022). Centella asiatica extract cream inhibited microphthalmia-associated transcription factor (MITF) expression and prevented melanin amount increase in Guinea pig skin exposed to ultraviolet-B. Neurologico Spinale Medico Chirurgico, 5(1), 27–31. https://doi.org/10.36444/nsmc.v5i1.177
Indrisari, M., Sartini, S., Miskad, U. A., Djawad, K., Tahir, K. A., Nurkhairi, N., & Muslimin, L. (2021). Photoprotective and inhibitory activity of tyrosinase in extract and fractions of terminalia catappa l. Open Access Macedonian Journal of Medical Sciences, 9, 263–270. https://doi.org/10.3889/oamjms.2021.5940
Islam, M. E., Rahman, S. M., Sohrab, M. H., Biswas, R., Ullah, M. S., & Islam, K. D. (2019). Concordance of antioxidant and anti-Inflammatory activity in Xylocarpus granatum (Koen). Journal of the Bangladesh Agricultural University, 17(4), 466–475. https://doi.org/10.3329/jbau.v17i4.44607
Jalalvand, A. R., Zhaleh, M., Goorani, S., Zangeneh, M. M., Seydi, N., Zangeneh, A., & Moradi, R. (2019). Chemical characterization and antioxidant, cytotoxic, antibacterial, and antifungal properties of ethanolic extract of Allium Saralicum R.M. Fritsch leaves rich in linolenic acid, methyl ester. Journal of Photochemistry and Photobiology B: Biology, 192, 103–112. https://doi.org/10.1016/j.jphotobiol.2019.01.017
Kaminski, K., Kazimierczak, U., & Kolenda, T. (2022). Oxidative stress in melanogenesis and melanoma development. Wspolczesna Onkologia, 26(1), 1–7. https://doi.org/10.5114/wo.2021.112447
Ko, G. A., Shrestha, S., & Cho, S. K. (2018). Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway. Nutrition Research and Practice, 12(1), 3–12. https://doi.org/10.4162/nrp.2018.12.1.3
Komine, M. (2018). Regulation of Expression of Keratins and their Pathogenic Roles in Keratinopathies. In Keratin (pp. 11–22). IntechOpen. https://doi.org/10.5772/intechopen.79140
Kumari, S., Thng, S. T. G., Verma, N. K., & Gautam, H. K. (2018). Melanogenesis inhibitors. Acta Dermato-Venereologica, 98(10), 924–931. https://doi.org/10.2340/00015555-3002
Kuo, Y. H., Chen, C. W., Chu, Y., Lin, P., & Chiang, H. M. (2015). In vitro and in vivo studies on protective action of N-phenethyl caffeamide against photodamage of skin. PLoS ONE, 10(9), 1–13. https://doi.org/10.1371/journal.pone.0136777
Kuspradini, H., Wulandari, I., Putri, A. S., Tiya, S. Y., & Kusuma, I. W. (2018). Phytochemical, antioxidant and antimicrobial properties of Litsea angulata extracts. F1000Research, 7, 1–10. https://doi.org/10.12688/f1000research.16620.1
Lo, J. A. (2014). The melanoma revolution: From UV carcinogenesis to a new era in therapeutics. Science, 346(6212), 945–949. https://doi.org/10.1126/science.1253735
Mansuri, R., Diwan, A., Kumar, H., Dangwal, K., & Yadav, D. (2021). Potential of Natural Compounds as Sunscreen Agents. Pharmacognosy Reviews, 15(29), 47–56. https://doi.org/10.5530/phrev.2021.15.5
Mapoung, S., Arjsri, P., Thippraphan, P., Semmarath, W., Yodkeeree, S., Chiewchanvit, S., Piyamongkol, W., & Limtrakul, P. (2020). Photochemoprotective effects of Spirulina platensis extract against UVB irradiated human skin fibroblasts. South African Journal of Botany, 130, 198–207. https://doi.org/10.1016/j.sajb.2020.01.001
Martinez, R. M., Fattori, V., Saito, P., Melo, C. B. P., Borghi, S. M., Pinto, I. C., Bussmann, A. J. C., Baracat, M. M., Georgetti, S. R., Verri, W. A., & Casagrande, R. (2018). Lipoxin A4 inhibits UV radiation-induced skin inflammation and oxidative stress in mice. Journal of Dermatological Science, 91(2), 164–174. https://doi.org/10.1016/j.jdermsci.2018.04.014
Ma’ruf, M. (2022). Local Knowledge and Vegetation Composition of Boli Fruit (Xylocarpus granatum J.Koenig) in Balikpapan Bay, East Kalimantan. Journal of Tropical Ethnobiology, 5(2), 94–102. https://doi.org/10.46359/jte.v5i2.158
Miya, G. M., Oriola, A. O., Payne, B., Cuyler, M., Lall, N., & Oyedeji, A. O. (2023). Steroids and Fatty Acid Esters from Cyperus sexangularis Leaf and Their Antioxidant, Anti-Inflammatory and Anti-Elastase Properties. Molecules, 28(8), 1–14. https://doi.org/10.3390/molecules28083434
Mohammad, H., Rao, M. R. K., Sundram, L., Dinakar, S., Kumar, S. M., Sathish Kumar, M., & Vijayalakshmi, N. (2019). The gas chromatography-mass spectrometry study of one ayurvedic pain relieving oil ‘Karpooradi Thailam’. Drug Invention Today, 12(7), 1542–1546. https://www.researchgate.net/publication/335014718
Moolla, S. (2022). Dermatology: how to manage facial hyperpigmentation in skin of colour. Drugs in Context, 11, 1–14. https://doi.org/10.7573/dic.2021-11-2
Moreno, C. T., Martínez, G. C., Martínez, M. M., Ferrer, J. E. J., Chaverri, J. P., Arrellín, G., Zamilpa, A., Campos, O. N. M., Earl, G. L., Cruz, G. J. B., Hernández, B., Ramírez, C. C., Santana, M. A., Fragoso, G., & Rosas, G. (2018). Acetone fraction from Sechium edule (Jacq.) S.w. edible roots exhibits anti-endothelial dysfunction activity. Journal of Ethnopharmacology, 220, 75–86. https://doi.org/10.1016/j.jep.2018.02.036
Morsy, N. (2014). Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chemistry, 13(1), 7–21. https://doi.org/10.3233/MGC-130117
Mota, M. D., Morte, A. N. da B., Silva, L. C. R. C. e., & Chinalia, F. A. (2020). Sunscreen protection factor enhancement through supplementation with Rambutan (Nephelium lappaceum L) ethanolic extract. Journal of Photochemistry and Photobiology B: Biology1, 205, 1–36. https://doi.org/10.1016/j.jphotobiol.2020.111837
Nishi, K., Mori, M., Nakayama, D., Sato, J., Kim, I.-H., Kim, M., Kim, S., & Sugahara, T. (2020). Anti-melanogenic activity of methanolic extract from leaves of Sorbaria sorbifolia var. stellipila Max. on α-MSH-stimulated B16 melanoma 4A5 cells. Biomedical Dermatology, 4(1), 1–8. https://doi.org/10.1186/s41702-020-0061-z
Panich, U., Sittithumcharee, G., Rathviboon, N., & Jirawatnotai, S. (2016). Ultraviolet radiation-induced skin aging: The role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging. Stem Cells International, 2016, 1–14. https://doi.org/10.1155/2016/7370642
Peng, Z., Chen, B., Zheng, Q., Zhu, G., Cao, W., Qin, X., & Zhang, C. (2020). Ameliorative effects of peptides from the oyster (crassostrea hongkongensis) protein hydrolysates against UVB-induced skin photodamage in mice. Marine Drugs, 18(6), 1–19. https://doi.org/10.3390/md18060288
Pillaiyar, T., Manickam, M., & Namasivayam, V. (2017). Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. In Journal of Enzyme Inhibition and Medicinal Chemistry (Vol. 32, Number 1, pp. 403–425). Taylor and Francis Ltd. https://doi.org/10.1080/14756366.2016.1256882
Polyium, U. (2020). Phytochemicals Investigation and Antioxidant Activities of the Xylocarpus granatum Extracts. Applied Mechanics and Materials, 901, 17–21.
Prasathkumar, M., Anisha, S., Khusro, A., Essa, M. M., Chidambaram, S. B., Qoronfleh, M. W., Sadhasivam, S., Sahibzada, M. U. K., Alghamdi, S., Almehmadi, M., Abdulaziz, O., Khandaker, M. U., Faruque, M. R. I., & Emran, T. Bin. (2022). Anti-pathogenic, anti-diabetic, anti-inflammatory, antioxidant, and wound healing efficacy of Datura metel L. leaves. Arabian Journal of Chemistry, 15(9), 1–17. https://doi.org/10.1016/j.arabjc.2022.104112
Pratama, G. M. C. T., Hartawan, I. G. N. B. R. M., Indriani, I. G. A. T., Yusrika, M. U., Suryantari, S. A. A., Satyarsa, A. B. S., & Sudarsa, P. S. S. (2020). Potensi Ekstrak Spirulina platensis sebagai Tabir Surya terhadap Paparan Ultraviolet B Potency of Spirulina platensis Extract as Sunscreen on Ultraviolet B Exposure. Journal of Medicine and Health , 2(6), 205–217. https://doi.org/10.28932/jmh
Pringgenies, D., Yudiati, E., Widyadmi, R., Anggelina, A. C., & Bahry, M. S. (2021). Xylocarpus granatum Mangrove Fruit Extract and Sodium Alginate Extract Lotion as Potent Wound Treatment Medicine. Jurnal Biologi Papua, 13(1), 67–73. https://doi.org/10.31957/jbp.1114
Rashad, M. M., Mahmoud, A. E., Ali, M. M., Nooman, M. U., & Alkashef, A. S. (2015). Antioxidant and anticancer agents produced from pineapple waste by solid state fermentation. International Journal of Toxicological and Pharmacological Research, 7(6), 1–11. https://www.researchgate.net/publication/305467568
Saiki, P., Kawano, Y., Van Griensven, L. J. L. D., & Miyazaki, K. (2017). The anti-inflammatory effect of: Agaricus brasiliensis is partly due to its linoleic acid content. Food and Function, 8(11), 4150–4158. https://doi.org/10.1039/c7fo01172e
Sasadara, M. M. V., Wirawan, I. G. P., Jawi, I. M., Sritamin, M., Dewi, N. N. A., & Adi, A. A. A. M. (2021). Anti-inflammatory effect of red macroalgae bulung sangu (Gracilaria sp.) extract in UVB-irradiated mice. Pakistan Journal of Biological Sciences, 24(1), 80–89. https://doi.org/10.3923/pjbs.2021.80.89
Serre, C., Busuttil, V., & Botto, J. M. (2018). Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. International Journal of Cosmetic Science, 40(4), 328–347. https://doi.org/10.1111/ics.12466
Shabunin, A. S., Yudin, V. E., Dobrovolskaya, I. P., Zinovyev, E. V., Zubov, V., Ivan’kova, E. M., & Morganti, P. (2019). Composite wound dressing based on chitin/chitosan nanofibers: Processing and biomedical applications. Cosmetics, 6(1), 1–28. https://doi.org/10.3390/cosmetics6010006
Sharawy, M. H., El-Agamy, D. S., Shalaby, A. A., & Ammar, E. S. M. (2013). Protective effects of methyl palmitate against silica-induced pulmonary fibrosis in rats. International Immunopharmacology, 16(2), 191–198. https://doi.org/10.1016/j.intimp.2013.04.007
Sharifi, E., Chehelgerdi, M., Fatahian-Kelishadrokhi, A., Yazdani-Nafchi, F., & Ashrafi-Dehkordi, K. (2021). Comparison of therapeutic effects of encapsulated Mesenchymal stem cells in Aloe vera gel and Chitosan-based gel in healing of grade-II burn injuries. Regenerative Therapy, 18, 30–37. https://doi.org/10.1016/j.reth.2021.02.007
Sharma, H., Reeta, K., Sharma, U., & Suri, V. (2023). Decanoic acid mitigates ischemia reperfusion injury by modulating neuroprotective, inflammatory and oxidative pathways in middle cerebral artery occlusion model of stroke in rats. Journal of Stroke and Cerebrovascular Diseases, 32(8), 2873–296. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107184
Shi, X., Wu, Y., Lv, T., Wang, Y., Fu, Y., Sun, M., Shi, Q., Huo, C., Wang, Q., & Gu, Y. (2017). A chemometric-assisted LC–MS/MS method for the simultaneous determination of 17 limonoids from different parts of Xylocarpus granatum fruit. Analytical and Bioanalytical Chemistry, 409(19), 4669–4679. https://doi.org/10.1007/s00216-017-0413-8
Srinivasan, R., Mohankumar, R., Kannappan, A., Raja, V. K., Archunan, G., Pandian, S. K., Ruckmani, K., & Ravi, A. V. (2017). Exploring the anti-quorum sensing and antibiofilm efficacy of phytol against Serratia marcescens associated acute pyelonephritis infection in wistar rats. Frontiers in Cellular and Infection Microbiology, 7, 1–18. https://doi.org/10.3389/fcimb.2017.00498
Susilowati, I. T., & Purwati, P. (2021). The Measurement of Antioxidant Activity of Velvet Beans (Mucuna pruriens) and Velvet Beans (Mucuna pruriens) in Coffee Preparations. Biomedika, 13(2), 117–122. https://doi.org/10.31001/biomedika.v13i2.900
Swallah, M. S., Sun, H., Affoh, R., Fu, H., & Yu, H. (2020). Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. International Journal of Food Science, 2020. https://doi.org/10.1155/2020/9081686
Swamy, M. K., Sinniah, U. R., & Akhtar, M. S. (2015). In vitro pharmacological activities and GC-ms analysis of different solvent extracts of Lantana camara leaves collected from tropical region of Malaysia. Evidence-Based Complementary and Alternative Medicine, 2015, 1–9. https://doi.org/10.1155/2015/506413
Tagashira, H., Miyamoto, A., Kitamura, S. I., Tsubata, M., Yamaguchi, K., Takagaki, K., & Imokawa, G. (2015). UVB stimulates the expression of endothelin B receptor in human melanocytes via a sequential activation of the p38/MSK1/CREB/MITF pathway which can be interrupted by a French maritime pine bark extract through a direct inactivation of MSK1. PLoS ONE, 10(6), 1–17. https://doi.org/10.1371/journal.pone.0128678
Tareq, A. M., Hossain, M. M., Uddin, M., Islam, F., Khan, Z., Karim, M. M., Lyzu, C., Ağagündüz, D., Reza, A. S. M. A., Emran, T. Bin, & Capasso, R. (2023). Chemical profiles and pharmacological attributes of Apis cerana indica beehives using combined experimental and computer-aided studies. Heliyon, 9(4), 1–19. https://doi.org/10.1016/j.heliyon.2023.e15016
Tel, G., Öztürk, M., Duru, M. E., Doğan, B., & Harmandar, M. (2013). Fatty Acid Composition, Antioxidant, Anticholinesterase and Tyrosinase Inhibitory Activities of Four Serratula Species from Anatolia Evaluation of the biological potential of medicinal and aromatic plants View project polyphenols View project Mehmet Öztürk Mugla Üniversitesi Mehmet Emin Duru Mugla Üniversitesi Fatty Acid Composition, Antioxidant, Anticholinesterase and Tyrosinase Inhibitory Activities of Four Serratula Species from Anatolia. Academy of Chemistry of Globe Publications , 7(2), 86–95. www.acgpubs.org/RNP
Teng, H., Fan, X., Lv, Q., Zhang, Q., Xiao, J., Qian, Y., Zheng, B., Gao, H., Gao, S., & Chen, L. (2020). Folium nelumbinis (Lotus leaf) volatile-rich fraction and its mechanisms of action against melanogenesis in B16 cells. Food Chemistry, 330, 1–36. https://doi.org/10.1016/j.foodchem.2020.127030
Tomizawa, Y., Tsuda, Y., Saleh, M. N., Wee, A. K. S., Takayama, K., Yamamoto, T., Yllano, O. B., Salmo, S. G., Sungkaew, S., Adjie, B., Ardli, E., Suleiman, M., Tung, N. X., Soe, K. K., Kandasamy, K., Asakawa, T., Watano, Y., Baba, S., & Kajita, T. (2017). Genetic structure and population demographic history of a widespread mangrove plant Xylocarpus granatum (Meliaceae) across the Indo-West Pacific region. Forests, 8(12), 1–18. https://doi.org/10.3390/f8120480
Trisnawati, I., Zamani, N. P., & Srimariana, E. S. (2019). Potensi Senyawa Bioaktif sebagai Inhibitor Tirosinase pada Batang dan Daun Mangrove Xylocarpus granatum (Koenig, 1784) di Kawasan Segara Anakan. Bogor Agricultural University (IPB). http://repository.ipb.ac.id/handle/123456789/97688
Tundis, R., Loizzo, M. R., Bonesi, M., Peruzzi, L., & Efferth, T. (2019). Daphne striata Tratt. and D. mezereum L.: a study of anti-proliferative activity towards human cancer cells and antioxidant properties. Natural Product Research, 33(12), 1809–1812. https://doi.org/10.1080/14786419.2018.1437432
Vikas, B., Akhil, B. S., Remani, P., & Sujathan, K. (2017). Free radical scavenging properties of Annona squamosa. Asian Pacific Journal of Cancer Prevention, 18(10), 2725–2731. https://doi.org/10.22034/APJCP.2017.18.10.2725
Wang, Z. C., Zhao, W. Y., Cao, Y., Liu, Y. Q., Sun, Q., Shi, P., Cai, J. Q., Shen, X. Z., & Tan, W. Q. (2020). The Roles of Inflammation in Keloid and Hypertrophic Scars. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.603187
Wiraswati, H. L., Fauziah, N., Pradini, G. W., Kurnia, D., Kodir, R. A., Berbudi, A., Arimdayu, A. R., Laelalugina, A., Supandi, & Ma’ruf, I. F. (2023). Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico. Metabolites, 13(2), 1–28. https://doi.org/10.3390/metabo13020281
Yang, C. C., Hung, C. F., & Chen, B. H. (2017). Preparation of coffee oil-algae oil-based nanoemulsions and the study of their inhibition effect on UVA-induced skin damage in mice and melanoma cell growth. International Journal of Nanomedicine, 12, 6559–6580. https://doi.org/10.2147/IJN.S144705
Yang, L., Sun, Y. yin, Liu, Y. ru, Yin, N. na, Bu, F. tian, Yu, H. xia, Du, X. sa, Li, J., & Huang, C. (2020). PTP1B promotes macrophage activation by regulating the NF-κB pathway in alcoholic liver injury. Toxicology Letters, 319, 11–21. https://doi.org/10.1016/j.toxlet.2019.11.001
Young, A. R., Claveau, J., & Rossi, A. B. (2017). Ultraviolet radiation and the skin: Photobiology and sunscreen photoprotection. Journal of the American Academy of Dermatology, 76(3), 100–109. https://doi.org/10.1016/j.jaad.2016.09.038
Younis, M. M., Ayoub, I. M., Mostafa, N. M., Hassab, M. A. El, Eldehna, W. M., Al-Rashood, S. T., & Eldahshan, O. A. (2022). GC/MS Profiling, Anti-Collagenase, Anti-Elastase, Anti-Tyrosinase and Anti-Hyaluronidase Activities of a Stenocarpus sinuatus Leaves Extract. Plants, 11(7), 1–19. https://doi.org/10.3390/plants11070918
Published
2024-09-18
How to Cite
Kusuma Wardani, I. G. A. A., Senapathi, T. G. A., Satriyasa, B. K., Indrayani, A. W., & Arijana, I. G. K. N. (2024). Antiinflammatory and Antimelanogenic Effects of Xylocarpus granatum J. Koenig Leaf Extract Cream on UVB Radiation-Induced Sunburn in Guinea Pigs. Indonesian Journal of Pharmacy, 35(4), 613–628. https://doi.org/10.22146/ijp.9427
Section
Research Article