The Abundance of Bioactive Compounds in Fingerroot Essential Oil Before and After Self Nanoemulsifying Drug Delivery System (SNEDDS) as a Potential Substitute for Synthetic Antibiotics in Livestock

  • Dyanovita Al Kurnia Department of Animal Nutrition and Feed Science, Faculty of Animal Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Indonesia; Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Islam Lamongan, Lamongan 62211, Indonesia
  • Zuprizal Zuprizal Department of Animal Nutrition and Feed Science, Faculty of Animal Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Nanung Danar Dono Department of Animal Nutrition and Feed Science, Faculty of Animal Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Ronny Martien Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Chusnul Hanim Department of Animal Nutrition and Feed Science, Faculty of Animal Sciences, Universitas Gadjah Mada, Yogyakarta 55281
Keywords: Antibiotics, Essential Oil, Nanoemulsion, SNEDDS, Fingerroot

Abstract

This research focuses on optimizing and stabilizing the essential oil of fingerroot (Boesenbergia rotunda), a plant native to Indonesia, using self-nanoemulsifying drug delivery system (SNEDDS) technology. This essential oil possesses antimicrobial, anti-inflammatory, and antifungal properties, making it a potential alternative to synthetic antibiotics. However, its low bioavailability and volatility limit its usage. The study involved two stages: nanoemulsion creation using a D-optimization design expert and stability analysis of bioactive compounds through gas chromatography-mass spectrometry (GC-MS). The optimized formula consisted of fingerroot essential oil, virgin coconut oil (VCO), Tween 80, and Polyethylene Glycol (PEG) 400 in percentages of 12.61, 12.61, 53.65, and 21.12%, respectively. Prior to nanoemulsion, the essential oil contained 28.28% camphor and 27.13% 1,8-cineole as the highest bioactive compounds. After applying the SNEDDS technology, the camphor content decreased to 25.17%, while the 1,8-cineole content reduced to 12.14%. These findings enhance the effectiveness and stability of fingerroot essential oil, facilitating its potential application in pharmaceutical and therapeutic fields.

 

References

Abbas, S., Bashari, M., Akhtar, M., Li, W., & Zhang, X. (2014). Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. International Journal of Ultrasonics Sonochemistry, 21, 1265–1274. doi:10.1016/j.ultsonch.2013.12.17.
Aiswarya, S. (2015). Therapeutic effects of Bossenbergia rotunda. International Journal of Science and Research, 6, 1323–1327.
Arniputri, R. B., Sakya, A. T., & Rahayu, M. (2007). The identification of major components of temu kunci (Kaemferia pandurata Roxb) essential oils on different altitudes. Jurnal Biodiversitas, 8, 135–137. doi:10.13057/biodiv/d080212.
Baharudin, M. K. A., Hamid, S. A., & Deny, S. (2015). Chemical composition and antibacterial activity of essential oils from three aromatic plants of the Zingiberaceae family in Malaysia. Journal of Physical Science, 26, 71–81.
Bali, V., Ali, M., & Ali, J. (2011). Nanocarrier for the enhanced bioavailability of a cardiovascular agent: in vitro, pharmacodynamic, pharmacokinetic and stability assessment. International Journal of Pharmaceutics, 403, 46–56. doi:10.10161/j.ijpharm.2010.10.018.
Basalious, E. B., Shawky, N., & Badr-Eldin, S. M. (2010). SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: Development and optimization. International Journal of Pharmaceutics, 391, 203–211. doi:10.1016/j.ijpharm.2010.03.008.
Borai, E. H., Hamed, M. G., El-kamash, A. M., & Abo-Aly, M. M. (2018). Sonochemical synthesis and characterization of emulsion polymer for sorption of lanthanides. Journal of Molecular Liquids, 255, 556–561. doi:10.1016/j.molliq.2018.01.151.
Chahyadi, A., Hartati, R., Wirasutisna, K. R., & Elfahmi. (2014). Boesenbergia pandurata Roxb., an Indonesian medicinal plant: Phytochemistry, biological activity, plant biotechnology. Procedia Chemistry, 13, 13–37. doi:10.1016/j.proche.2014.12.003.
Chellapa, P., Mohamed, A. T., Keleb, E. I., Elmahgoubi, A., Eid, A. M., Issa, Y. S., & Elmarzugi, N. A. (2015). Nanoemulsion and nanoemulgel as a tropical formulation. Journal of Pharmacy, 5, 43–47.
Daning, D. R. A., Yusiati, L. M., Hanim C., & Widyobroto, B. P. (2022). Dietary supplementation of galangal (Alpinia galangal) essential oil affects rumen fermentation pattern. Advances in Animal and Veterinary Science, 10(2), 323–334. doi:10.17582/journal.aavs/2002/10.2.323.334.
El-Hack, M. E., El-Saadony, M. T., Saad, A. M., Salem, H. M., Ashry, N. M., Ghanima, M. M. A., Shukry, M., Swelum, A. A., Taha, A. E., El-Tahan, A. M., AbuQamar, S. F., & El-Tarabily, K. A. (2022). Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: A comprehensive review. Poultry Science, 101, 1–21. doi:10.1016/j.psj.2021.101584.
Farouk, A., Fikry, R., & Mohsen, M. (2016). Chemical composition and antioxidant activity of Ocimum basilicum L. essential oil cultivated in Madinah Monawara, Saudi Arabia and its comparison to the Egyptian chemotype. Journal of Essential Oil Bearing Plants, 19(5), 1119–1128. doi:10.1080/0972060X.2016.1149112.
Gakuubi, M. M. (2016). Steam distillation extraction and chemical composition of essential oils of Toddalia asiatica L. and Eucalyptus camaldulensis Dehnh. Journal of Pharmacognosy and Phytochemistry, 5(2), 99–104.
Gaur, S., Garg, A., Yadav, D., Beg, M. N., & Gaur, K. (2014). Nanoemulsion gel as a novel oil-based colloidal nanocarrier for topical delivery of bifonazole. Indian Research Journal of Pharmacy and Science, 1(3), 36–54.
Gopi, M. (2014). Essential oils as a feed additive in poultry nutrition. Advances in Animal and Veterinary Sciences, 2(1), 1–7. doi:10.14737/journal.aavs/2014.2.1.1.7.
Hadi, U., Kuntaman, K., Qiptiyah, M., & Paraton, H. (2013). Problem of antibiotic use and antimicrobial resistance in Indonesia: Are we really making progress? Indonesian Journal of Tropical and Infectious Disease, 4(4), 5–8. doi:10.20473/ijtid.v4i4.222.
Halnor, V. V., Pande, V. V., Borawake, D. D., & Nagare, H. S. (2018). Nanoemulsion: A novel platform for drug delivery system. Journal of Materials Science & Nanotechnology, 6, 1–11.
Hao, Y., Liu, Y., Yang, R., Zhang, X., Liu, J., & Yang, H. (2018). A pH-responsive TiO2-based Pickering emulsion system for in situ catalyst recycling. Chinese Chemical Letters, 29, 778–782. doi:10.1016/j.ccletj.2018.01.010.
Joye, I. J., & McClements, D. J. (2013). Production of nanoparticles by anti-solvent precipitation for use in food system. Trends in Food Science & Technology, 34, 109–123. doi:10.1016/j.tifs.2013.10.002.
Kassem, A. A., Mohsen, A. M., Ahmed, R. S., & Essam, T. M. (2016). Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: Design, optimization, in vitro and in vivo evaluation. Journal of Molecular Liquids, 218, 219–232. doi:10.1016/j.molliq.2016.02.081.
Khan, A. W., Kotta, S., Ansari, S. H., Sharma, R. K., & Ali, J. (2015). Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: Design, characterization, in vitro and in vivo evaluation. Drug Delivery, 22(4), 552–561. doi:10.3109/10717544.2013.878003.
Khataee, A., Gholami, P., Kalderis, D., Pachatouridou, E., & Konsolakis, M. (2018). Preparation of novel CeO2 biochar nanocomposite for sonocatalytic degradation of a textile dye. Ultrasonics Sonochemistry, 41, 503–513. doi:10.1016/j.ultsonch.2017.10.013.
Kumari, R., Gupta, S., Singh, A. R., Ferosekhan, S., Kothari, D. C., Pal, A. K., & Jadhao, S. B. (2013). Chitosan Nanoencapsulated Exogenous Trypsin Biomimics Zymogen-Like Enzyme in Fish Gastrointestinal Tract. Chitosan-Trypsin Biomimics Like Zymogen in GIT, 8. doi: doi:10.1371/journal.pone.0074743.
Kwasigroch, B., Escribano, E., Morán, M. D. C., Queralt, J., Busquets, M. A., & Estelrich, J. C. (2016). Oil-in-water nanoemulsions are suitable for carrying hydrophobic compounds: Indomethacin as a model of anti-inflammatory drug. International Journal of Pharmaceutics, 515, 749–756. doi:10.1016/j.ijpharm.2016.11.016.
Liu, C., Zheng, W., Xie, R., Liu, Y., Liang, Z., Luo, G., Ding, M., & Liang, Q. (2019). Microfluidic fabrication of water-in-water droplets encapsulated in hydrogel microfibers. Chinese Chemical Letters, 30, 457–460.
Madan, J. R., Sudarshan, B., Kadam, V. S., & Kamal, D. (2014). Formulation and development of self-microemulsifying drug delivery system of pioglitazone hydrochloride. Asian Journal of Pharmaceutics, 8(1), 1–8.
Miksusanti, Jennie, B. S. L., Ponco, B., & Trimulyadi, G. (2008). Cell wall disruption of Escherichia coli Kl.l by Temu Kunci (Kaempferia pandurata) Essential Oil. Jurnal Ilmiah Nasional, 9, 1–8.
Parmar, N., Singla, N., Amin, S., & Kohli, K. (2011). Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloid Surfaces Biointerfaces, 86(2), 327–338. doi:10.1016/j.colsurfb.2011.04.016.
Pateiro, M., Gomez, B., Munekata, P. E. S., Barba, F. J., Putnik, P., Kovacevic, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality, and the appearance of the final food products. Molecules, 26(6), 1–26. doi:10.3390/molecules26061547.
Patel, J., Kevin, G., Patel, A., Raval, M., & Sheth, N. (2011). Design and development of a self-nanoemulsifying drug delivery system for telmisartan for oral drug delivery. International Journal of Pharmaceutical Investigation, 1(2), 112–118. doi:10.4103/2230-973x.82431.
Perez-Esteve, E., Bernardos, A., Martinez-Manez, R., & Barat, J. M. (2013). Nanotechnology in the development of novel functional foods or their package. An overview based on patent analysis. Recent Patents on Food, Nutrition & Agriculture, 5, 35–43. doi:10.2174/2212798411305010006.
Saani, S. M., Abdolalizadeh, J., & Heris, S. Z. (2019). Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Ultrasonics – Sonochemistry, 55, 86–95. doi:10.1016/j.ultsonch.2019.03.018.
Shah, S. B. A. (2015). Phytogenic Feed Additives in Animal Nutrition. Springer Science, 20, 2–22. doi:10.1007/978-94-017-9810-5_20.
Silalahi, M. (2017). Boesenbergia rotunda (L.). Mansfeld: Benefits and their secondary metabolites. Jurnal EduMatSains, 1, 107–118. doi:10.33541/edumatsains.v1i2.237.
Sugumar, S., Clarke, S. K., Nirmala, M. J., Tyagi, B. K., Mukherjee, A., & Chandrasekaran, N. (2014). Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bulletin of Entomological Research, 104, 393–402. doi:10.1017/S0007485313000710.
Tsai, M., Fu, S., Lin, Y., Huang, Y. B., & Wu, P. C. (2014). The effect of nanoemulsion as a carrier of hydrophilic compound for transdermal delivery. Nanoemulsion for hydrophilic compound transdermal delivery, 9, 1–7. doi:10.1371/journal.pone.0102850.
Ujilestari, T., Ariyadi, B., Martien, R., Zuprizal, & Dono, N. D. (2019). Optimization of self-nanoemulsifying drug delivery systems of lemongrass (Cymbopogon citratus) essential oil. International Journal of Applied Pharmaceutics, 11(1), 144–149. doi:10.22159/ijap.2019v11i1.30099.
Wulandari, E., Alverina, A. C., & Martien, R. (2016). SNEDDS (Self Nanoemulsifying Drug Delivery System) formulation of carotene in olive oil (Olea europaea). International Journal of Advanced Research (IJAR), 4, 1031–1043. doi:10.21474/IJAR01/2179.
Yuliasari, S., Hamdan, & Syafrial. (2022). Nanotechnology applications for functional food support and food diversification. Bengkulu Agricultural Technology Assessment Center, Indonesia.
Published
2024-06-10
How to Cite
Al Kurnia, D., Zuprizal, Z., Danar Dono, N., Martien, R., & Chusnul Hanim. (2024). The Abundance of Bioactive Compounds in Fingerroot Essential Oil Before and After Self Nanoemulsifying Drug Delivery System (SNEDDS) as a Potential Substitute for Synthetic Antibiotics in Livestock. Indonesian Journal of Pharmacy, 35(2), 305–314. https://doi.org/10.22146/ijp.9319
Section
Research Article