Assessing the Antimetabolite Activity of Anthocyanins in Cantigi Fruits from Two Conservation Sites in Indonesia
Abstract
The objective of the current study was to evaluate the antimetabolite activity of anthocyanins in Cantigi fruits from two Indonesian conservation areas. Cantigi (Vaccinium varingiaefolium) is a native fruit species known for its rich anthocyanin content associated with various health benefits. However, more research needs to be conducted on the antimetabolite properties of these anthocyanins. This study collected Cantigi fruits from two conservation sites in Indonesia, Tangkuban Perahu (CTP) and Papandayan (CPP) Mountain, and the antimetabolite activity was evaluated using enzymatic assays. The results demonstrated significant antimetabolite activity of CTP, particularly in inhibiting α-Glucosidase (53.72±1,98 µg/ml), pancreatic lipase (110.48±2,13 µg/ml), and angiotensin-converting enzyme (27.32±1,24 µg/ml). Furthermore, our analysis using HRMS revealed the presence of three anthocyanin compounds, delphinidin, malvidin, and peonidin, which are believed to contribute to the observed antimetabolite activities of Cantigi. These findings provide valuable insights into the specific compounds responsible for the bioactivity of Cantigi and further support its potential as a natural source of bioactive substances. Future research should focus on elucidating the molecular mechanisms underlying the effects of these anthocyanins on the targeted enzymes and exploring their potential synergistic interactions.
References
Chen, Z., Wang, C., Pan, Y., Gao, X., & Chen, H. (2018). Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high-fat diet and streptozotocin-induced diabetic mice. Food Funct, 9(1), 426-439. https://doi.org/10.1039/c7fo00983f
de Rosas, I., Deis, L., Baldo, Y., Cavagnaro, J. B., & Cavagnaro, P. F. (2022). High-Temperature Alters Anthocyanin Concentration and Composition in Grape Berries of Malbec, Merlot, and Pinot Noir in a Cultivar-Dependent Manner. Plants, 11(7).
Farah, A., de Paulis, T., Trugo, L. C., & Martin, P. R. (2005). Effect of roasting on the formation of chlorogenic acid lactones in coffee. J Agric Food Chem, 53(5), 1505-1513. https://doi.org/10.1021/jf048701t
GH, L., Frydoonfar, H., R, H., James, P., & Zare, S. (2006). The Effect of Light, Temperature, pH and Species on Stability of Anthocyanin Pigments in Four Berberis Species. Pakistan Journal of Nutrition, 5. https://doi.org/10.3923/pjn.2006.90.92
Gonçalves, A. C., Nunes, A. R., Flores-Félix, J. D., Alves, G., & Silva, L. R. (2022). Cherries and Blueberries-Based Beverages: Functional Foods with Antidiabetic and Immune Booster Properties. Molecules, 27(10).
Goszcz, K., Deakin, S. J., Duthie, G. G., Stewart, D., & Megson, I. L. (2017). Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells. Oxid Med Cell Longev, 2017, 9260701. https://doi.org/10.1155/2017/9260701
Hager, T. J., Howard, L. R., Liyanage, R., Lay, J. O., & Prior, R. L. (2008). Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS. J Agric Food Chem, 56(3), 661-669. https://doi.org/10.1021/jf071990b
Hidalgo, M., Martin-Santamaria, S., Recio, I., Sanchez-Moreno, C., de Pascual-Teresa, B., Rimbach, G., & de Pascual-Teresa, S. (2012). Potential anti-inflammatory, anti-adhesive, anti/estrogenic, and angiotensin-converting enzyme inhibitory activities of anthocyanins and their gut metabolites. Genes & Nutrition, 7, 295-306. https://doi.org/10.1007/s12263-011-0263-5
Jiang, X., Li, X., Zhu, C., Sun, J., Tian, L., Chen, W., & Bai, W. (2019). The target cells of anthocyanins in metabolic syndrome. Crit Rev Food Sci Nutr, 59(6), 921-946. https://doi.org/10.1080/10408398.2018.1491022
Kataoka, I., Sugiyama, A., & Beppu, K. (2003). Role of Ultraviolet Radiation in Accumulation of Anthocyanin in Berries of 'Gros Colman' Grapes (Vitis vinifera L.). Engei Gakkai Zasshi, 72, 1-6. https://doi.org/10.2503/jjshs.72.1
Krikorian, R., Shidler, M. D., Nash, T. A., Kalt, W., Vinqvist-Tymchuk, M. R., Shukitt-Hale, B., & Joseph, J. A. (2010). Blueberry supplementation improves memory in older adults. J Agric Food Chem, 58(7), 3996-4000. https://doi.org/10.1021/jf9029332
Krikorian, R., Skelton, M. R., Summer, S. S., Shidler, M. D., & Sullivan, P. G. (2022). Blueberry Supplementation in Midlife for Dementia Risk Reduction. Nutrients, 14(8). https://doi.org/10.3390/nu14081619
Li, H., Zhang, C., Deng, Z., Zhang, B., & Li, H. (2022). Antioxidant activity of delphinidin and pelargonidin: Theory and practice. Journal of Food Biochemistry, 46(8), e14192. https://doi.org/https://doi.org/10.1111/jfbc.14192
Liang, N., & Kitts, D. D. (2015). Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients, 8(1). https://doi.org/10.3390/nu8010016
Mansouri, A., Embarek, G., Kokkalou, E., & Kefalas, P. (2005). Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chemistry, 89(3), 411-420. https://doi.org/https://doi.org/10.1016/j.foodchem.2004.02.051
Meng, S., Cao, J., Feng, Q., Peng, J., & Hu, Y. (2013). Roles of chlorogenic Acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med, 2013, 801457. https://doi.org/10.1155/2013/801457
Mikkel Roulund, W., Max Norman Tandrup, L., Christine Bodelund, C., & Per Bendix, J. (2022). Effects of Anthocyanin-rich Berries on the Risk of Metabolic Syndrome: A Systematic Review and Meta-analysis. The Review of Diabetic Studies, 18(1).
Moein, S., Moein, M., & Javid, H. (2022). Inhibition of α-Amylase and α-Glucosidase of Anthocyanin Isolated from Berberis integerrima Bunge Fruits: A Model of Antidiabetic Compounds. Evidence-Based Complementary and Alternative Medicine, 2022, 6529590. https://doi.org/10.1155/2022/6529590
Naseri, R., Farzaei, F., Haratipour, P., Nabavi, S. F., Habtemariam, S., Farzaei, M. H., Khodarahmi, R., Tewari, D., & Momtaz, S. (2018). Anthocyanins in the Management of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Pharmacol, 9, 1310. https://doi.org/10.3389/fphar.2018.01310
Nile, S., Kim, D., & Keum, Y.-S. (2015). Determination of Anthocyanin Content and Antioxidant Capacity of Different Grape Varieties. Ciência e Técnica Vitivinícola, 30, 60-68. https://doi.org/10.1051/ctv/20153002060
Panache, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. J Nutr Sci, 5, e47. https://doi.org/10.1017/jns.2016.41
Park, C.-H., Kim, J.-H., Lee, E. B., Hur, W., Kwon, O.-J., Park, H.-J., & Yoon, S. K. (2017). Aronia melanocarpa Extract Ameliorates Hepatic Lipid Metabolism through PPARγ2 Downregulation. PLOS ONE, 12(1), e0169685. https://doi.org/10.1371/journal.pone.0169685
Promyos, N., Temviriyanukul, P., & Suttisansanee, U. (2020). Investigation of Anthocyanidins and Anthocyanins for Targeting α-Glucosidase in Diabetes Mellitus. Prev Nutr Food Sci, 25(3), 263-271. https://doi.org/10.3746/pnf.2020.25.3.263
Refdanita Refdanita, E. D., Cesilia Meti Dwiriani, Sumatri C, Effendi AT, Ana Yulyana, Eko Mugiyanto. (2021). EFFECT OF ADMINISTRATION OF RICE BRAN OIL EMULSION BEVERAGES ON TUMOR NECROSIS FACTOR-ALPHA (TNF-α) LEVEL. African Journal of Food, Agriculture, Nutrition and Development 21(3):(3), 17741-17751. https://doi.org/DOI: 10.18697/ajfand.98.19615
Samirana, P. O., Susidarti, R., & Rohman, A. (2016). Isolation and 2,2’-diphenyl-1-picrylhydrazyl radical scavenging activity of active compound from Jujube tree (Zizyphus mauritiana Auct. non Lamk.). International Journal of Food Properties, 20. https://doi.org/10.1080/10942912.2016.1233427
Seeram, N. P., Adams, L. S., Hardy, M. L., & Heber, D. (2004). Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J Agric Food Chem, 52(9), 2512-2517. https://doi.org/10.1021/jf0352778
Tena, N., & Asuero, A. G. (2022). Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants, 11(2).
Wang, L., Pan, X., Jiang, L., Chu, Y., Gao, S., Jiang, X., Zhang, Y., Chen, Y., Luo, S., & Peng, C. (2022). The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review [Review]. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.943911
Xu, J.-G., Hu, Q.-P., & Liu, Y. (2012). Antioxidant and DNA-Protective Activities of Chlorogenic Acid Isomers. Journal of Agricultural and Food Chemistry, 60(46), 11625-11630. https://doi.org/10.1021/jf303771s
Yildiz, E., Guldas, M., Ellergezen, P., Acar, A. G., & Gurbuz, O. (2021). Obesity-associated Pathways of Anthocyanins. Food Science and Technology, 41.
Yulyana, A., Winarno, H., & Kosasih, K. (2016). Karakterisasi Ekstrak Daun Cantigi (Vaccinium varingiaefolium Miq.). Jurnal Sains dan Kesehatan, 1(5), 276-283. https://doi.org/10.25026/jsk.v1i5.50