Effects of Quercetin Fraction from Moringa oleifera Leaf Extract on Oxidative Markers and Histological Profile of Carotid and Coronary Arteries: An Experimental Animal Study
Abstract
Objectives: Stroke and coronary disease are mainly caused by atherosclerosis. Quercetin in Moringa oleifera leaf extract may protect against oxidative stress. This study aimed to determine the role of quercetin in improving dyslipidemia and inhibiting atherosclerosis onset using laboratory and histological examinations. Methods: This experimental laboratory study used a double-blind randomized sampling technique and a pre- and post-test control group design. Experimental animals were divided into the control and treatment groups that received quercetin at a dose of 25 mg/kg body weight and a high-fat diet for 10 weeks from January to March 2023. Results: The Friedman's test of the effect of quercetin administration on malondialdehyde (MDA), intercellular adhesion molecule (ICAM), C-reactive proteins (CRP), and low-density lipoprotein (LDL) levels revealed significant differences between the pre- and post-test. The Wilcoxon signed-rank test for the effect of quercetin administration on MDA levels revealed a significant difference in MDA levels after quercetin administration. Paired sample statistics revealed an average decrease in ICAM and CRP levels and an increase in LDL levels after quercetin administration. Cramer's V value demonstrated a strong relationship between quercetin administration and the intensity of the carotid and coronary arteries. A one-way analysis of variance indicated significant differences in the average sizes of the coronary and carotid arteries after quercetin administration. Conclusion: The quercetin fraction of M. oleifera leaves has a satisfactory therapeutic effect in an atherosclerotic rat model.
References
Benjamin, E., Virani, S., & Callaway, C. (2018). Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. American Heart Association Journal, 137(12), 67–492.
Bhaskar, S., Sudhakaran, P. R., & Helen, A. (2016). Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cellular Immunology, 310, 131–140. https://doi.org/10.1016/j.cellimm.2016.08.011
Bian, Y., Liu, P., Zhong, J., Hu, Y., Zhuang, S., Fan, K., & Liu, Z. (2018). Quercetin Attenuates Adhesion Molecule Expression in Intestinal Microvascular Endothelial Cells by Modulating Multiple Pathways. Digestive Diseases and Sciences, 63(12), 3297–3304. https://doi.org/10.1007/s10620-018-5221-2
Cheng, S.-C., Huang, W.-C., S. Pang, J.-H., Wu, Y.-H., & Cheng, C.-Y. (2019). Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. International Journal of Molecular Sciences, 20(12), 2957. https://doi.org/10.3390/ijms20122957
Chimowitz, M. I., Lynn, M. J., Derdeyn, C. P., Turan, T. N., Fiorella, D., Lane, B. F., Janis, L. S., Lutsep, H. L., Barnwell, S. L., Waters, M. F., Hoh, B. L., Hourihane, J. M., Levy, E. I., Alexandrov, A. V., Harrigan, M. R., Chiu, D., Klucznik, R. P., Clark, J. M., McDougall, C. G., … Cloft, H. J. (2011). Stenting versus Aggressive Medical Therapy for Intracranial Arterial Stenosis. New England Journal of Medicine, 365(11), 993–1003. https://doi.org/10.1056/NEJMoa1105335
Chimowitz, M. I., Lynn, M. J., Derdeyn, C. P., Turan, T. N., Fiorella, D., Lane, B. F., Janis, L. S., Lutsep, H. L., Barnwell, S. L., Waters, M. F., Hoh, B. L., Hourihane, J. M., Levy, E. I., Alexandrov, A. V, Harrigan, M. R., Chiu, D., Klucznik, R. P., Clark, J. M., Mcdougall, C. G., … Cloft, H. J. (2013). Stenting versus Aggressive Medical Therapy for Intracranial Arterial Stenosis for the SAMMPRIS Trial Investigators *. New England Journal of Medicine, 365(11), 993–1003. https://doi.org/10.1056/NEJMoa1105335
Helmy, S. A., Morsy, N. F. S., Elaby, S. M., & Ghaly, M. A. A. (2017). Hypolipidemic effect of moringa oleifera lam leaf powder and its extract in diet-induced hypercholesterolemic rats. Journal of Medicinal Food, 20(8), 755–762. https://doi.org/10.1089/jmf.2016.0155
HOEHMANN, C. L., FUTTERMAN, B., & BEATTY, B. L. (2017). Peripheral Arteries May Be Reliable Indicators of Coronary Vascular Disease. The Anatomical Record, 300(7), 1230–1239. https://doi.org/10.1002/ar.23584
Ito, F., Sono, Y., & Ito, T. (2019a). Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: Oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants, 8(3). https://doi.org/10.3390/antiox8030072
Ito, F., Sono, Y., & Ito, T. (2019b). Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants, 8(3), 72. https://doi.org/10.3390/antiox8030072
Juźwiak, S., Wójcicki, J., Mokrzycki, K., Marchlewicz, M., Białecka, M., Wenda-Rózewicka, L., Gawrońska-Szklarz, B., & Droździk, M. (2005). Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. Pharmacological Reports : PR, 57(5), 604–609.
Khan, M. A., & Mujahid, M. (2020). Recent Advances in Electrochemical and Optical Biosensors Designed for Detection of Interleukin 6. Sensors, 20(3), 646. https://doi.org/10.3390/s20030646
Lankin, V. Z., Tikhaze, A. K., & Melkumyants, A. M. (2022). Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development. International Journal of Molecular Sciences, 24(1), 128. https://doi.org/10.3390/ijms24010128
Li, J.-X., Tian, R., & Lu, N. (2023). Quercetin Attenuates Vascular Endothelial Dysfunction in Atherosclerotic Mice by Inhibiting Myeloperoxidase and NADPH Oxidase Function. Chemical Research in Toxicology, 36(2), 260–269. https://doi.org/10.1021/acs.chemrestox.2c00334
Luo, X., Weng, X., Bao, X., Bai, X., Lv, Y., Zhang, S., Chen, Y., Zhao, C., Zeng, M., Huang, J., Xu, B., Johnson, T. W., White, S. J., Li, J., Jia, H., & Yu, B. (2022). A novel anti-atherosclerotic mechanism of quercetin: Competitive binding to KEAP1 via Arg483 to inhibit macrophage pyroptosis. Redox Biology, 57, 102511. https://doi.org/10.1016/j.redox.2022.102511
Mehany, A. B. M., Belal, A., Santali, E. Y., Shaaban, S., Abourehab, M. A. S., El-Feky, O. A., Diab, M., Abou Galala, F. M. A., Elkaeed, E. B., & Abdelhamid, G. (2022). Biological Effect of Quercetin in Repairing Brain Damage and Cerebral Changes in Rats: Molecular Docking and In Vivo Studies. BioMed Research International, 2022, 1–12. https://doi.org/10.1155/2022/8962149
Mirsafaei, L., Reiner, Ž., Shafabakhsh, R., & Asemi, Z. (2020). Molecular and Biological Functions of Quercetin as a Natural Solution for Cardiovascular Disease Prevention and Treatment. Plant Foods for Human Nutrition, 75(3), 307–315. https://doi.org/10.1007/s11130-020-00832-0
Mulianto N. (2020). Malondialdehid sebagai penanda stres oksidatif pada berbagai penyakit kulit. Cermin Dunia Kedokteran, 47(1), 42.
Nakashima, Y., Raines, E. W., Plump, A. S., Breslow, J. L., & Ross, R. (1998). Upregulation of VCAM-1 and ICAM-1 at Atherosclerosis-Prone Sites on the Endothelium in the ApoE-Deficient Mouse. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(5), 842–851. https://doi.org/10.1161/01.ATV.18.5.842
Pathak, A., Singh, S. K., Thewke, D. P., & Agrawal, A. (2020). Conformationally Altered C-Reactive Protein Capable of Binding to Atherogenic Lipoproteins Reduces Atherosclerosis. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01780
Peace, A., Van Mil, A., Jones, H., & Thijssen, D. H. J. (2018). Similarities and Differences Between Carotid Artery and Coronary Artery Function. Current Cardiology Reviews, 14(4), 254–263. https://doi.org/10.2174/1573403X14666180910125638
Pellizzon, M. (2014). Diet-Induced Atherosclerosis/Hypercholesterolemia in Rodent Models. November 2011.
Poredos, P., Golob, M., & Jensterle, M. (2003). Interrelationship between peripheral arterial occlusive disease, carotid atherosclerosis and flow mediated dilation of the brachial artery. International Angiology : A Journal of the International Union of Angiology, 22(1), 83–87.
Rahmayanti, A. N., Febriyanti, R. M., & Diantini, A. (2021). Review Article : Antihyperlipidemic Activity Study of Plants Utilized by West Java Society Based on Indigenous Knowledge. 1(1), 33–39.
Riskesdas, K. (2018). Hasil Utama Riset Kesehata Dasar (RISKESDAS). Journal of Physics A: Mathematical and Theoretical, 44(8), 1–200. https://doi.org/10.1088/1751-8113/44/8/085201
Ruengsakulrach, P., Sinclair, R., Komeda, M., Raman, J., Gordon, I., & Buxton, B. (1999). Comparative Histopathology of Radial Artery Versus Internal Thoracic Artery and Risk Factors for Development of Intimal Hyperplasia and Atherosclerosis. Circulation, 100(Supplement 2), II-139-II–144. https://doi.org/10.1161/01.CIR.100.suppl_2.II-139
Sathya, T. N., Aadarsh, P., V. Deepa, P., & Murthy, B. (2010). MORINGA OLEIFERA LAM. LEAVES PREVENT CYCLOPHOSPHAMIDE-INDUCED MICRONUCLEUS AND DNA DAMAGE IN MICE. International Journal of Phytomedicine, 2(2).
Sekartuti. (2013). Riset Kesehatan Dasar (RISKESDAS). Kementerian Kesehatan Republik Indonesia.
Senyigit, A., Durmus, S., Mirzatas, E. B., Ozsobacı, N. P., Gelisgen, R., Tuncdemir, M., Ozcelik, D., Simsek, G., & Uzun, H. (2019). Effects of Quercetin on Lipid and Protein Damage in the Liver of Streptozotocin-Induced Experimental Diabetic Rats. Journal of Medicinal Food, 22(1), 52–56. https://doi.org/10.1089/jmf.2018.0030
Sproston, N. R., & Ashworth, J. J. (2018). Role of C-Reactive Protein at Sites of Inflammation and Infection. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.00754
Subbotin, V. M. (2016). Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target. Drug Discovery Today, 21(10), 1578–1595. https://doi.org/10.1016/j.drudis.2016.05.017
Sujatha, R., & Kavitha, S. (2017). Atherogenic indices in stroke patients: A retrospective study. Iranian Journal of Neurology, 16(2), 78–82.
Sutrisno, L. (2011a). Efek pemberian ekstrak metanol meningkatkan apoptosis pada sel epitel kolon tikus (Rattus novergius) yang diinduksi dengan 7,12 dimethylbenz (alfa) antrazen (DMBA). Universitas Brawijaya Malang.
Sutrisno, L. (2011b). Efek Pemebrian Ekstrak Metanol meningkatkan Apoptosis pada Sel Epitel Kolon Tikus (Rattus Novergius) yang Diinduksi dengan 7,12 Dimethylbenz (alfa) Antrazen (DMBA). Universitas Brawijaya Malang.
Tabrizi, R., Tamtaji, O. R., Mirhosseini, N., Lankarani, K. B., Akbari, M., Heydari, S. T., Dadgostar, E., & Asemi, Z. (2020). The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 60(11), 1855–1868. https://doi.org/10.1080/10408398.2019.1604491
TN, S., P, A., V, D., & Murthy P, B. (2010). Moringa oleifera Lam. leaves prevent Cyclophosphamide-induced Micronucleus and DNA damage in mice rats. International Journal of Phytomedicine, 2(2), 147–154. https://doi.org/10.5138/ijpm.2010.0975.0185.02023
Turgeon, M. L. (2020). Immunology & Serology in Laboratory Medicine-E-Book. Elsevier Health Sciences.
Varona, J. F., Ortiz-Regalón, R., Sánchez-Vera, I., López-Melgar, B., García-Durango, C., Castellano Vázquez, J. M., Solís, J., Fernández-Friera, L., & Vidal-
Vanaclocha, F. (2019). Soluble ICAM 1 and VCAM 1 Blood Levels Alert on Subclinical Atherosclerosis in Non Smokers with Asymptomatic Metabolic Syndrome. Archives of Medical Research, 50(2), 20–28. https://doi.org/10.1016/j.arcmed.2019.05.003