Beta-Blocker in Heart Rate Control and Cardio Protection: The Role of ADRB1 Variants and HCN4 Regulation – A Systematic Review

  • Rasmaya Niruri Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, IndonesiaDepartment of Pharmacy, Faculty Mathematics and Science, Universitas Sebelas Maret, Surakarta, 57125, Indonesia https://orcid.org/0000-0002-9684-2573
  • Zullies Ikawati
  • Agung Endro Nugroho Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia 2. Department of Pharmacy, Faculty Mathematics and Science, Universitas Sebelas Maret, Surakarta, 57125, Indonesia https://orcid.org/0000-0001-7840-8493
  • Habibie Arifianto Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57125, Indonesia https://orcid.org/0000-0001-5145-1299
Keywords: Beta-blocker, ADRB1, HCN4, Heart Failure

Abstract

Elevated heart rate is linked to adverse cardiovascular outcomes. Sinoatrial (SA) nodes, hyperpolarization-activated cyclic nucleotide-gated-4 (HCN4) channels, and beta1-adrenergic receptor (ADRB1) are responsible for generating the heart rate.  Beta-blockers have a cardioprotective effect on heart failure, including controlling heart rate. However, the responses to beta-blockers can vary among individuals. ADRB1 genetic variability may be contributed to the differential beta-blocker effect in heart failure.  HCN4 also performs a crucial function in the pacemaker cells of the heart. Exploring the effect of beta-blockers in pacemaker cells is expanding the view of their role and their therapeutic response in heart failure. The objectives of this study were to identify ADRB1 genetic variants affecting heart rate response in heart failure subjects with beta-blocker treatment and to explore the effect of beta-blockers on HCN4 channels and SA nodes. A systematic review was performed using three databases. Eight of 668 manuscripts were selected. The systematic review found that ADRB1 genetic variants (A145G (Ser49Gly) and C1165G (Arg389Gly)) can affect heart rate response in beta-blocker-treated heart failure. The study also found that the percentage of patients with the Ser49Ser-Gly389X haplotype achieved a heart rate target was higher than other haplotypes. Individuals with the Arg389Arg genotype necessitated a markedly increased amount of beta-blocker dose to reach the identical heart rate target compared to those with the Gly389X gene variation. In addition, the review found that carvedilol, a beta-blocker derivative, demonstrated beneficial effects in inhibiting HCN-gated channels.  Bisoprolol and carvedilol improved channel regulation in the SA Node by reversing the downregulation of HCN4 and sodium channels.  In general, this systematic review provides important insights into beta-blockers in treating heart failure, specifically concerning the genetic variability of ADRB1 and the beta-blockers effect on the SA node and HCN4 channels.

Author Biographies

Rasmaya Niruri, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, IndonesiaDepartment of Pharmacy, Faculty Mathematics and Science, Universitas Sebelas Maret, Surakarta, 57125, Indonesia

Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

Department of Pharmacy, Faculty Mathematics and Science, Universitas Sebelas Maret, Surakarta, 57125, Indonesia

Agung Endro Nugroho, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia 2. Department of Pharmacy, Faculty Mathematics and Science, Universitas Sebelas Maret, Surakarta, 57125, Indonesia

Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia 2. Department of Pharmacy, Faculty Mathematics and Science, Universitas Sebelas Maret, Surakarta, 57125, Indonesia

Habibie Arifianto, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57125, Indonesia

Faculty of Medicine, Universitas Sebelas Maret, Surakarta, 57125, Indonesia

References

Abraham, W. T. (2000). β-blockers: The new standard of therapy for mild heart failure. Archives of Internal Medicine, 160(9), 1237–1247. https://doi.org/https://doi.org/10.1001/archinte.160.9.1237
Abraham, W. T., Piccini, J. P., Dufton, C., Carroll, I. A., Healey, J. S., O’Connor, C. M., Marshall, D., Aleong, R., van Veldhuisen, D. J., Rienstra, M., Wilton, S. B., White, M., Sauer, W. H., Anand, I. S., Huebler, S. P., Connolly, S. J., & Bristow, M. R. (2022). Dose-limiting, adverse event-associated bradycardia with β-blocker treatment of atrial fibrillation in the GENETIC-AF trial. Heart Rhythm O2, 3(1), 40–49. https://doi.org/10.1016/j.hroo.2021.11.005
Al-Khatib, S. M., Stevenson, W. G., Ackerman, M. J., Bryant, W. J., Callans, D. J., Curtis, A. B., Deal, B. J., Dickfeld, T., Field, M. E., Fonarow, G. C., Gillis, A. M., Granger, C. B., Hammill, S. C., Hlatky, M. A., Joglar, J. A., Kay, G. N., Matlock, D. D., Myerburg, R. J., & Page, R. L. (2018). 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the He. Heart Rhythm, 15(10), e73–e189. https://doi.org/10.1016/j.hrthm.2017.10.036
Aleong, R. G. (2013). Adrenergic receptor polymorphisms and prevention of ventricular arrhythmias with bucindolol in patients with chronic heart failure. Circulation: Arrhythmia and Electrophysiology, 6(1), 137–143. https://doi.org/10.1161/CIRCEP.111.969618
Almeida, N. C. O. S., Silva, F. R. P., Carneiro, A. L. B., Lima, E. S., Barcellos, J. F. M., & Furtado, S. C. (2021). Libidibia ferrea (jucá) anti-inflammatory action: A systematic review of in vivo and in vitro studies. PloS One, 16(11), e0259545. https://doi.org/10.1371/journal.pone.0259545
Ayubi, E., Safiri, S., & Mansori, K. (2021). Association between maternal smoking during pregnancy and risk of bone fractures in offspring: a systematic review and meta-analysis. Clinical and Experimental Pediatrics, 64(3), 96–102. https://doi.org/10.3345/cep.2019.01466
Badu-Boateng, C., Jennings, R., & Hammersley, D. (2018). The therapeutic role of ivabradine in heart failure. Therapeutic Advances in Chronic Disease, 9(11), 199–207. https://doi.org/10.1177/2040622318784556
Bauersachs, J., & Veltmann, C. (2020). Heart rate control in heart failure with reduced ejection fraction: the bright and the dark side of the moon. In European journal of heart failure (Vol. 22, Issue 3, pp. 539–542). https://doi.org/10.1002/ejhf.1733
Behar, J., Ganesan, A., Zhang, J., & Yaniv, Y. (2016). The Autonomic Nervous System Regulates the Heart Rate through cAMP-PKA Dependent and Independent Coupled-Clock Pacemaker Cell Mechanisms. Frontiers in Physiology, 7, 419. https://doi.org/10.3389/fphys.2016.00419
Borovac, J. A., D’Amario, D., Bozic, J., & Glavas, D. (2020). Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World Journal of Cardiology, 12(8), 373–408. https://doi.org/10.4330/wjc.v12.i8.373
Bouzamondo, A., Hulot, J. S., Sanchez, P., Cucherat, M., & Lechat, P. (2001). Beta‐blocker treatment in heart failure. Fundamental & Clinical Pharmacology, 15(2), 95–109. https://doi.org/https://doi.org/10.1046/j.1472-8206.2001.00019.x
Bristow, M. R. (2011). Treatment of chronic heart failure with β-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology. Circulation Research, 109(10), 1176–1194. https://doi.org/https://doi.org/10.1161/circresaha.111.245092
Cao, Y., Chen, S., Liang, Y., Wu, T., Pang, J., Liu, S., & Zhou, P. (2018). Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels by β-blocker carvedilol. British Journal of Pharmacology, 175(20), 3963–3975. https://doi.org/10.1111/bph.14469
Chen, H., Zhang, S., Hou, R., & Liu, H. (2022). Gi-protein-coupled β (1)-adrenergic receptor: re-understanding the selectivity of β (1)-adrenergic receptor to G protein. Acta Biochimica et Biophysica Sinica, 54(8), 1043–1048. https://doi.org/10.3724/abbs.2022096
Chevalier, P., Roy, P., Bessière, F., Morel, E., Ankou, B., Morgan, G., Halder, I., London, B., Minobe, W. A., Slavov, D., Delinière, A., Bochaton, T., Paganelli, F., Lesavre, N., Boiteux, C., Mansourati, J., Maury, P., Clerici, G., Winum, P. F., … Bristow, M. R. (2023). Impact of Neuroeffector Adrenergic Receptor Polymorphisms on Incident Ventricular Fibrillation During Acute Myocardial Ischemia. Journal of the American Heart Association, 12(6), e025368. https://doi.org/10.1161/JAHA.122.025368
Cohen‐Solal, A., Jacobson, A. F., & Piña, I. L. (2017). Beta blocker dose and markers of sympathetic activation in heart failure patients: interrelationships and prognostic significance. ESC Heart Failure, 4(4), 499–506.
de Lucia, C., Femminella, G. D., Gambino, G., Pagano, G., Allocca, E., Rengo, C., Silvestri, C., Leosco, D., Ferrara, N., & Rengo, G. (2014). Adrenal adrenoceptors in heart failure. Frontiers in Physiology, 5, 246. https://doi.org/10.3389/fphys.2014.00246
Depuydt, A.-S., Peigneur, S., & Tytgat, J. (2022). Review: HCN Channels in the Heart. Current Cardiology Reviews, 18(4), e040222200836. https://doi.org/10.2174/1573403X18666220204142436
Docherty, K. F., Shen, L., Castagno, D., Petrie, M. C., Abraham, W. T., Böhm, M., Desai, A. S., Dickstein, K., Køber, L. V, Packer, M., Rouleau, J. L., Solomon, S. D., Swedberg, K., Vazir, A., Zile, M. R., Jhund, P. S., & McMurray, J. J. V. (2020). Relationship between heart rate and outcomes in patients in sinus rhythm or atrial fibrillation with heart failure and reduced ejection fraction. European Journal of Heart Failure, 22(3), 528–538. https://doi.org/10.1002/ejhf.1682
Du, Y. (2016). β1-Adrenergic blocker bisoprolol reverses down-regulated ion channels in sinoatrial node of heart failure rats. Journal of Physiology and Biochemistry, 72(2), 293–302. https://doi.org/10.1007/s13105-016-0481-9
Dumeny, L., Chantra, M., Langaee, T., Duong, B. Q., Zambrano, D. H., Han, F., Lopez-Colon, D., Humma, J. F., Dacosta, J., Lovato, T., Mei, C., Duarte, J. D., Johnson, J. A., Peek, G. J., Jacobs, J. P., Bleiweis, M. S., & Cavallari, L. H. (2022). β1-receptor polymorphisms and junctional ectopic tachycardia in children after cardiac surgery. Clinical and Translational Science, 15(3), 619–625. https://doi.org/10.1111/cts.13178
Eriksen-Volnes, T., Westheim, A., Gullestad, L., Slind, E. K., & Grundtvig, M. (2020). β-Blocker Doses and Heart Rate in Patients with Heart Failure: Results from the National Norwegian Heart Failure Registry. Biomedicine Hub, 5(1), 9–18. https://doi.org/10.1159/000505474
Farzam, K., & Jan, A. (2022). Beta Blockers In: StatPearls. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK532906/
Felker, G. M., & Mann, D. L. (2019). Heart Failure: A Companion to Braunwald’s Heart Disease (4th ed.). Elsevier.
Figueiredo neto, J. A., Grupi, C., & Mady, C. (2004). Effect of beta-blocker in plasma norepinephrine levels in patients with heart failure. Journal of Cardiac Failure, 10(4), S51. https://doi.org/10.1016/j.cardfail.2004.06.119
Filigheddu, F. (2013). Genetic prediction of heart failure incidence, prognosis and beta-blocker response. Molecular Diagnosis and Therapy, 17(4), 205–219. https://doi.org/10.1007/s40291-013-0035-6
Fiuzat, M. (2013). Association between adrenergic receptor genotypes and beta-blocker dose in heart failure patients: Analysis from the HF-ACTION DNA substudy. European Journal of Heart Failure, 15(3), 258–266. https://doi.org/10.1093/eurjhf/hfs175
Grandi, E., & Ripplinger, C. M. (2019). Antiarrhythmic mechanisms of beta blocker therapy. Pharmacological Research, 146, 104274. https://doi.org/10.1016/j.phrs.2019.104274
Guerra, L. A., Lteif, C., Arwood, M. J., McDonough, C. W., Dumeny, L., Desai, A. A., Cavallari, L. H., & Duarte, J. D. (2022). Genetic polymorphisms in ADRB2 and ADRB1 are associated with differential survival in heart failure patients taking β-blockers. The Pharmacogenomics Journal, 22(1), 62–68. https://doi.org/10.1038/s41397-021-00257-1
Hackl, B., Lukacs, P., Ebner, J., Pesti, K., Haechl, N., Földi, M. C., Lilliu, E., Schicker, K., Kubista, H., Stary-Weinzinger, A., Hilber, K., Mike, A., Todt, H., & Koenig, X. (2022). The Bradycardic Agent Ivabradine Acts as an Atypical Inhibitor of Voltage-Gated Sodium Channels. Frontiers in Pharmacology, 13, 809802. https://doi.org/10.3389/fphar.2022.809802
Hasking, G. J., Esler, M. D., Jennings, G. L., Burton, D., Johns, J. A., & Korner, P. I. (1986). Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation, 73(4), 615–621. https://doi.org/10.1161/01.cir.73.4.615
Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M., Deswal, A., Drazner, M. H., Dunlay, S. M., Evers, L. R., Fang, J. C., Fedson, S. E., Fonarow, G. C., Hayek, S. S., Hernandez, A. F., Khazanie, P., Kittleson, M. M., Lee, C. S., Link, M. S., … Yancy, C. W. (2022). 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145(18), e876–e894. https://doi.org/10.1161/CIR.0000000000001062
Hennis, K., Biel, M., Fenske, S., & Wahl-Schott, C. (2022). Paradigm shift: new concepts for HCN4 function in cardiac pacemaking. Pflugers Archiv : European Journal of Physiology, 474(7), 649–663. https://doi.org/10.1007/s00424-022-02698-4
Hennis, K., Biel, M., Wahl-Schott, C., & Fenske, S. (2021). Beyond pacemaking: HCN channels in sinoatrial node function. Progress in Biophysics and Molecular Biology, 166, 51–60. https://doi.org/10.1016/j.pbiomolbio.2021.03.004
Hersunarti, N., Siswanto, B. B., Erwinanto, Nauli, S. E., Lubis, A. C., Wiryawan, N., Dewi, P. P., Pratikto, R. S., & Hasanah, D. Y. (2020). Perhimpunan Dokter Spesialis kardiovaskular Indonesia (PERKI): Pedoman Tata Laksana Gagal Jantung. (S. B.B. (ed.); 2nd ed.). Kelompok Kerja Gagal Jantung dan Kardiometanolik. PP PERKI. https://www.inaheart.org/
Hesse, K. (2022). Target heart rate in heart failure with reduced ejection fraction and atrial fibrillation: Goldilocks zone. American Heart Journal Plus: Cardiology Research and Practice, 100218.
Hooijmans, C. R., Rovers, M. M., de Vries, R. B. M., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14, 43. https://doi.org/10.1186/1471-2288-14-43
Kao, D. P. (2013). Effect of bucindolol on heart failure outcomes and heart rate response in patients with reduced ejection fraction heart failure and atrial fibrillation. European Journal of Heart Failure, 15(3), 324–333. https://doi.org/10.1093/eurjhf/hfs181
Kashou A.H., Basit H, C. L. (2023). Physiology, Sinoatrial Node. In: StatPearls. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK459238/
Katsarou, M.-S., Karathanasopoulou, A., Andrianopoulou, A., Desiniotis, V., Tzinis, E., Dimitrakis, E., Lagiou, M., Charmandari, E., Aschner, M., Tsatsakis, A. M., Chrousos, G. P., & Drakoulis, N. (2018). Beta 1, Beta 2 and Beta 3 Adrenergic Receptor Gene Polymorphisms in a Southeastern European Population. Frontiers in Genetics, 9, 560. https://doi.org/10.3389/fgene.2018.00560
Kawada, T., Shimizu, S., Uemura, K., Hayama, Y., Yamamoto, H., Shishido, T., Nishikawa, T., & Sugimachi, M. (2019). Ivabradine preserves dynamic sympathetic control of heart rate despite inducing significant bradycardia in rats. The Journal of Physiological Sciences : JPS, 69(2), 211–222. https://doi.org/10.1007/s12576-018-0636-2
Kelley, E. F., Snyder, E. M., & Johnson, B. D. (2018). Influence of Beta-1 Adrenergic Receptor Genotype on Cardiovascular Response to Exercise in Healthy Subjects. Cardiology Research, 9(6), 343–349. https://doi.org/10.14740/cr785
Kurgansky, K. E., Schubert, P., Parker, R., Djousse, L., Riebman, J. B., Gagnon, D. R., & Joseph, J. (2020). Association of pulse rate with outcomes in heart failure with reduced ejection fraction: a retrospective cohort study. BMC Cardiovascular Disorders, 20(1), 92. https://doi.org/10.1186/s12872-020-01384-6
Lee, H. Y. (2016). Impact of the β-1 adrenergic receptor polymorphism on tolerability and efficacy of bisoprolol therapy in korean heart failure patients: Association between β adrenergic receptor polymorphism and bisoprolol therapy in heart failure (ABBA) study. Korean Journal of Internal Medicine, 31(2), 277–287. https://doi.org/10.3904/kjim.2015.043
Libby, P., Bonow, R. O., Mann, D. L., Tomaselli, G. F., Bhatt, D., Solomon, S. D., & Braunwald, E. (2021). Braunwald’s Heart Disease, 2 Vol Set (12th ed.). Elsevier.
Liggett, S B. (2006). A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11288–11293. https://doi.org/10.1073/pnas.0509937103
Liggett, Stephen B, Mialet-Perez, J., Thaneemit-Chen, S., Weber, S. A., Greene, S. M., Hodne, D., Nelson, B., Morrison, J., Domanski, M. J., Wagoner, L. E., Abraham, W. T., Anderson, J. L., Carlquist, J. F., Krause-Steinrauf, H. J., Lazzeroni, L. C., Port, J. D., Lavori, P. W., & Bristow, M. R. (2006). A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11288–11293. https://doi.org/10.1073/pnas.0509937103
Liu, Y., Chen, J., Fontes, S. K., Bautista, E. N., & Cheng, Z. (2022). Physiological and pathological roles of protein kinase A in the heart. Cardiovascular Research, 118(2), 386–398. https://doi.org/10.1093/cvr/cvab008
Lymperopoulos, A. (2013). Adrenergic nervous system in heart failure: Pathophysiology and therapy. Circulation Research, 113(6), 739–753. https://doi.org/10.1161/CIRCRESAHA.113.300308
Maltsev, V. A., Sabbab, H. N., & Undrovinas, A. I. (2002). Down-regulation of sodium current in chronic heart failure: effect of long-term therapy with carvedilol. Cellular and Molecular Life Sciences : CMLS, 59(9), 1561–1568. https://doi.org/10.1007/s00018-002-8529-0
Masarone, D., Martucci, M. L., Errigo, V., & Pacileo, G. (2021). The use of β-blockers in heart failure with reduced ejection fraction. Journal of Cardiovascular Development and Disease, 8(9), 101.
McDonagh, T. A., Metra, M., Adamo, M., Gardner, R. S., Baumbach, A., Böhm, M., Burri, H., Butler, J., Čelutkienė, J., Chioncel, O., Cleland, J. G. F., Coats, A. J. S., Crespo-Leiro, M. G., Farmakis, D., Gilard, M., Heymans, S., Hoes, A. W., Jaarsma, T., Jankowska, E. A., … Kathrine Skibelund, A. (2021). 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 42(36), 3599–3726. https://doi.org/10.1093/eurheartj/ehab368
Muslimova, E., Rebrova, T., Kondratieva, D., Korepanov, V., Sonduev, E., Kozlov, B., & Afanasiev, S. (2022). Expression of the β1-adrenergic receptor (ADRB1) gene in the myocardium and β-adrenergic reactivity of the body in patients with a history of myocardium infraction. Gene, 844, 146820. https://doi.org/10.1016/j.gene.2022.146820
Nikolovska Vukadinović, A., Vukadinović, D., Borer, J., Cowie, M., Komajda, M., Lainscak, M., Swedberg, K., & Böhm, M. (2017). Heart rate and its reduction in chronic heart failure and beyond. European Journal of Heart Failure, 19(10), 1230–1241. https://doi.org/10.1002/ejhf.902
Oe, Y., Wang, X., Patriarchi, T., Konno, A., Ozawa, K., Yahagi, K., Hirai, H., Tsuboi, T., Kitaguchi, T., Tian, L., McHugh, T. J., & Hirase, H. (2020). Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nature Communications, 11(1), 471. https://doi.org/10.1038/s41467-020-14378-x
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical Research Ed.), 372, n71. https://doi.org/10.1136/bmj.n71
Parikh, K. S. (2018). Dose Response of β-Blockers in Adrenergic Receptor Polymorphism Genotypes. Circulation. Genomic and Precision Medicine, 11(8). https://doi.org/10.1161/CIRCGEN.117.002210
Parvez, B., Chopra, N., Rowan, S., Vaglio, J. C., Muhammad, R., Roden, D. M., & Darbar, D. (2012). A common β1-adrenergic receptor polymorphism predicts favorable response to rate-control therapy in atrial fibrillation. Journal of the American College of Cardiology, 59(1), 49–56. https://doi.org/10.1016/j.jacc.2011.08.061
Pathak, A., & Mrabeti, S. (2021). β-Blockade for Patients with Hypertension, Ischemic Heart Disease or Heart Failure: Where are We Now? Vascular Health and Risk Management, 17, 337–348. https://doi.org/10.2147/VHRM.S285907
PRISMA. (2020). Prisma Flow Diagram. Prisma. http://prisma-statement.org/prismastatement/flowdiagram.aspx
Proudman, R. G. W., Akinaga, J., & Baker, J. G. (2022). The signaling and selectivity of α-adrenoceptor agonists for the human α2A, α2B and α2C-adrenoceptors and comparison with human α1 and β-adrenoceptors. Pharmacology Research & Perspectives, 10(5), e01003. https://doi.org/10.1002/prp2.1003
Psotka, M. A., & Teerlink, J. R. (2016). Ivabradine: Role in the Chronic Heart Failure Armamentarium. Circulation, 133(21), 2066–2075. https://doi.org/10.1161/CIRCULATIONAHA.115.018094
Ramchandra, R., & Barrett, C. J. (2015). Regulation of the renal sympathetic nerves in heart failure. Frontiers in Physiology, 6, 238. https://doi.org/10.3389/fphys.2015.00238
Reddy, S. (2015). Adrenergic receptor genotype influences heart failure severity and β-blocker response in children with dilated cardiomyopathy. Pediatric Research, 77(2), 363–369. https://doi.org/10.1038/pr.2014.183
Roth, N., Zilliacus, J., & Beronius, A. (2021). Development of the SciRAP Approach for Evaluating the Reliability and Relevance of in vitro Toxicity Data. Frontiers in Toxicology, 3, 746430. https://doi.org/10.3389/ftox.2021.746430
Sandilands, A. J., & O’Shaughnessy, K. M. (2005). The functional significance of genetic variation within the beta-adrenoceptor. British Journal of Clinical Pharmacology, 60(3), 235–243. https://doi.org/10.1111/j.1365-2125.2005.02438.x
SciRAP. (2018). Instructions for evaluating reliability and relevance of in vivo and in vitro toxicity studies using the SciRAP tool. SciRAP. http://scirap.org/
Shah, A., Gandhi, D., Srivastava, S., Shah, K. J., & Mansukhani, R. (2017). Heart Failure: A Class Review of Pharmacotherapy. P & T : A Peer-Reviewed Journal for Formulary Management, 42(7), 464–472. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481297/
Shamsrizi, P., Gladstone, B. P., Carrara, E., Luise, D., Cona, A., Bovo, C., & Tacconelli, E. (2020). Supplementary Table S2: Modified Newcastle Ottawa quality assessment scale for case-control studies and cohort studies. In : Variation of effect estimates in the analysis of mortality and length of hospital stay in patients with infections caused by bacte. BMJ Open, 10(1), e03. https://doi.org/10.1136/bmjopen-2019-030266
Thomas, C. D. (2020). Pharmacogenetic factors affecting β-blocker metabolism and response. In Expert Opinion on Drug Metabolism and Toxicology (Vol. 16, Issue 10, pp. 953–964). https://doi.org/10.1080/17425255.2020.1803279
Thomas, & Marks, B. H. (1978). Plasma norepinephrine in congestive heart failure. The American Journal of Cardiology, 41(2), 233–243. https://doi.org/https://doi.org/10.1016/0002-9149(78)90162-5
Tran, L., Tam, D. N. H., Elshafay, A., Dang, T., Hirayama, K., & Huy, N. T. (2021). Quality assessment tools used in systematic reviews of in vitro studies: A systematic review. BMC Medical Research Methodology, 21(1), 101. https://doi.org/10.1186/s12874-021-01295-w
Tucker, W. D., Sankar, P., & Kariyanna, P. T. (2023). Selective Beta-1-Blockers. In: StatPearls. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK499982/
Velmurugan, B. K., Baskaran, R., & Huang, C.-Y. (2019). Detailed insight on β-adrenoceptors as therapeutic targets. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 117, 109039. https://doi.org/10.1016/j.biopha.2019.109039
Vollmert, T., Hellmich, M., Gassanov, N., Er, F., Yücel, S., Erdmann, E., & Caglayan, E. (2020). Heart rate at discharge in patients with acute decompensated heart failure is a predictor of mortality. European Journal of Medical Research, 25(1), 47. https://doi.org/10.1186/s40001-020-00448-9
Wells, G. A., Shea, B., O’Connell, D., J., P., Welch, V., Losos, M., & Tugwell, P. (2021). The Newcastle–Ottawa scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. The Ottawa Health Research Institute. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
Whirl-Carrillo, M., Huddart, R., Gong, L., Sangkuhl, K., Thorn, C. F., Whaley, R., & Klein, T. E. (2021). ADRB1. In: An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clinical Pharmacology & Therapeutics. https://www.pharmgkb.org/gene/PA38/haplotype
Wu, J. R., Chang, H. R., Huang, T. Y., & Chen, S. S. (1995). Increased plasma norepinephrine levels in infants and children with congestive heart failure. Zhonghua Minguo Xiao Er Ke Yi Xue Hui Za Zhi [Journal]. Zhonghua Minguo Xiao Er Ke Yi Xue Hui, 36(5), 351–356.
Xu, Y., Chen, S., Cao, Y., Zhou, P., Chen, Z., & Cheng, K. (2018). Discovery of novel small molecule TLR4 inhibitors as potent anti-inflammatory agents. European Journal of Medicinal Chemistry, 154, 253–266. https://doi.org/10.1016/j.ejmech.2018.05.033
Zhang, D., Shen, X., & Qi, X. (2016). Resting heart rate and all-cause and cardiovascular mortality in the general population: a meta-analysis. CMAJ : Canadian Medical Association Journal = Journal de l’Association Medicale Canadienne, 188(3), E53–E63. https://doi.org/10.1503/cmaj.150535
Published
2024-05-15
How to Cite
Niruri, R., Ikawati, Z., Nugroho, A. E., & Arifianto, H. (2024). Beta-Blocker in Heart Rate Control and Cardio Protection: The Role of ADRB1 Variants and HCN4 Regulation – A Systematic Review. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.8310
Section
Review Article