Revealing the Contribution of Phytochemicals in Syzygium cumini as Diabetics: A Systematic Review
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by increased blood glucose and abnormal carbohydrates, fats and proteins metabolism. Syzygium cumini (L.) Skeels (Myrtaceae) are widely used in anti-diabetic remedies and at the same time, rich in polyphenols. This study aims to provide a comprehensive review on the role of phytochemicals in Syzygium cumini to contribute in its anti-diabetic. The review covers related articles to antidiabetic AND Syzygium cumini AND phytochemicals OR bioactive which were published from 2012 to 2023. A systematic search was conducted by using databases Pubmed, Science Direct, Scopus, and Google The inclusion criteria include articles written in English as experimental research or clinical trials, randomized studies, and should contains phytochemical content profiling The exclusion criteria were other type of reports and or irrelevant to aforementioned topic. This review was written according to the reporting items guidelines for systematic payments and Meta-analysis (PRISMA), and SYRCLE's risk of bias (RoB) tool. By the systematic compensation used, 13 articles that meet the requirements were obtained and were further thoroughly reviewed. Seeds, leaves and bark of plant parts were reported to non-toxic in acute experiments on mice or rat. S. cumini contains flavonol glycosides, especially myricetin, myricitrin, quercetin, and kaempferol; phenolics, such as ellagic acid, tannins, gallic acid; alkaloids and saponins. These compounds contribution to the overall anti-diabetic activity were discussed, i.e increase of insulin sensitivity, secretion and usage of glucose in tissues; reducing insulin resistance, oxidative stress, gluconeogenesisand absorption of carbohydrates and sucrose. The seeds and leaves of S. cumini exhibit high potential to be developed as herbal products for anti-diabetics. This review finds a gap in research to support the development of the herbs as herbal products for anti-diabetics, in form of established preclinical and clinical trials and a reliable analytical methods for the phytochemical profiling.
References
Ajiboye, B. O., Ojo, O. A., Akuboh, O. S., Okesola, M. A., Idowu, O. T., Oyinloye, B. E., & Talabi, J. Y. (2018). The Protective Effect of Polyphenol-Rich Extract of Syzygium cumini Leaves on Cholinesterase and Brain Antioxidant Status in Alloxan-Induced Diabetic Rats. 11(2), 163–169.
Asanaliyar, M., & Nadig, P. (2021). In - Vivo anti-diabetic activity of hydro-ethanolic seed extract of Syzygium cumini (L.). Biomedical and Pharmacology Journal, 14(1), 241–247. https://doi.org/10.13005/bpj/2119
Atale, N., Chakraborty, M., Mohanty, S., Bhattacharya, S., Nigam, D., Sharma, M., & Rani, V. (2013). Cardioprotective role of Syzygium cumini against glucose-induced oxidative stress in H9C2 cardiac myocytes. Cardiovascular Toxicology, 13(3), 278–289. https://doi.org/10.1007/s12012-013-9207-1
Bai, J., Zhang, S., Cao, J., Sun, H., Mang, Z., Shen, W. L., & Li, H. (2022). Hernandezine, a natural herbal alkaloid, ameliorates type 2 diabetes by activating AMPK in two mouse models. Phytomedicine, 105(July), 154366. https://doi.org/10.1016/j.phymed.2022.154366
Baldissera, G., Sperotto, N. D. M., Rosa, H. T., Henn, J. G., Peres, V. F., Moura, D. J., Roehrs, R., Denardin, E. L. G., Dal Lago, P., Nunes, R. B., & Saffi, J. (2016). Effects of crude hydroalcoholic extract of Syzygium cumini (L.) Skeels leaves and continuous aerobic training in rats with diabetes induced by a high-fat diet and low doses of streptozotocin. Journal of Ethnopharmacology, 194, 1012–1021. https://doi.org/10.1016/j.jep.2016.10.056
Balyan, U., Verma, S. P., & Sarkar, B. (2019). Phenolic compounds from Syzygium cumini (L.) Skeels leaves: Extraction and membrane purification. Journal of Applied Research on Medicinal and Aromatic Plants, 12(January), 43–58. https://doi.org/10.1016/j.jarmap.2018.12.002
Bansode, T. S., Salalkar, B. K., Dighe, P., Nirmal, S., & Dighe, S. (2017). Comparative evaluation of antidiabetic potential of partially purified bioactive fractions from four medicinal plants in alloxan-induced diabetic rats. Ayu, 38(3–4), 165–170. https://doi.org/10.4103/ayu.AYU_18_17
Barman, N., & Saikia Barooah, M. (2016). Development of Functional RTS Beverage from Jamun (Syzygium cumini L.) and Melastoma malabathricum. Journal of Agricultural Engineering and Food Technology, 3(4), 293–298.
Barrière, D. A., Noll, C., Roussy, G., Lizotte, F., Kessai, A., Kirby, K., Belleville, K., Beaudet, N., Longpré, J. M., Carpentier, A. C., Geraldes, P., & Sarret, P. (2018). Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Scientific Reports, 8(1), 1–17. https://doi.org/10.1038/s41598-017-18896-5
Bhardwaj, S., & Gupta, D. (2012). Study of acute, sub acute and chronic toxicity test. International Journal of Advanced Research in Pharmaceutical & Bio Sciences, 1, 103+.
Bisht, R., Bhattacharya, S., Plant, A. J., & Res, S. (2013). Effect of various extracts of Desmodium gangeticum on Streptozotocin-nicotinamide induced type-2 diabetes. 3(3), 28–34.
Bitencourt, P. E. R., Bona, K. S. De, Cargnelutti, L. O., Bonfanti, G., Pigatto, A., Boligon, A., Athayde, M. L., Pierezan, F., Zanette, R. A., & Moretto, M. B. (2015). Syzygium cumini seed extract ameliorates adenosine deaminase activity and biochemical parameters but does not alter insulin sensitivity and pancreas architecture in a short-term model of diabetes. Journal of Complementary & Integrative Medicine, 12(3), 187–193. https://doi.org/10.1515/jcim-2015-0008
Chagas, V. T., Coelho, R. M. R. de S., Gaspar, R. S., da Silva, S. A., Mastrogiovanni, M., Mendonça, C. de J., Ribeiro, M. N. de S., Paes, A. M. de A., & Trostchansky, A. (2018). Protective Effects of a Polyphenol-Rich Extract from Syzygium cumini (L.) Skeels Leaf on Oxidative Stress-Induced Diabetic Rats. Oxidative Medicine and Cellular Longevity, 2018, 5386079. https://doi.org/10.1155/2018/5386079
Chamnansilpa, N., Aksornchu, P., Adisakwattana, S., Thilavech, T., Mäkynen, K., Dahlan, W., & Ngamukote, S. (2020). Anthocyanin-rich fraction from Thai berries interferes with the key steps of lipid digestion and cholesterol absorption. Heliyon, 6(11), e05408. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05408
Chao, J., Cheng, H. Y., Chang, M. L., Huang, S. S., Liao, J. W., Cheng, Y. C., Peng, W. H., & Pao, L. H. (2021). Gallic Acid Ameliorated Impaired Lipid Homeostasis in a Mouse Model of High-Fat Diet—and Streptozotocin-Induced NAFLD and Diabetes through Improvement of β-oxidation and Ketogenesis. Frontiers in Pharmacology, 11(February), 1–14. https://doi.org/10.3389/fphar.2020.606759
Chatterjee, K., Ali, K. M., De, D., Panda, D. K., & Ghosh, D. (2012). Antidiabetic and Antioxidative activity of Ethyl acetate Fraction of Hydromethanolic Extract of Seed of Eugenia jambolana Linn Through In-Vivo and In-Vitro Study and its Chromatographic Purification. Free Radicals and Antioxidants, 2(1), 21–30. https://doi.org/https://doi.org/10.5530/ax.2012.2.6
Choi, H. N., Kang, M. J., Lee, S. J., & Kim, J. I. (2014). Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-Sucrose diet. Nutrition Research and Practice, 8(5), 544–549. https://doi.org/10.4162/nrp.2014.8.5.544
Constantin, R. P., Constantin, R. P., Bracht, A., Yamamoto, N. S., Ishii-Iwamoto, E. L., & Constantin, J. (2014). Molecular mechanisms of citrus flavanones on hepatic gluconeogenesis. Fitoterapia, 92, 148–162. https://doi.org/10.1016/J.FITOTE.2013.11.003
Denisov, E.T., & Afanas’ev, I. . (2005). Oxidation and Antioxidants in Organic Chemistry and Biology (1 St). CRC Press. https://doi.org/. https://doi.org/10.1201/9781420030853
Dhanya, R. (2022). Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomedicine and Pharmacotherapy, 146(November 2021), 112560. https://doi.org/10.1016/j.biopha.2021.112560
Dhanya, R., Arya, A. D., Nisha, P., & Jayamurthy, P. (2017). Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Frontiers in Pharmacology, 8(JUN), 1–9. https://doi.org/10.3389/fphar.2017.00336
Ding, Y., Zhang, Z. F., Dai, X. Q., & Li, Y. (2012). Myricetin protects against cytokine-induced cell death in RIN-m5f β cells. In Journal of Medicinal Food (Vol. 15, Issue 8, pp. 733–740). https://doi.org/10.1089/jmf.2011.2033
Doan, K. V., Ko, C. M., Kinyua, A. W., Yang, D. J., Choi, Y. H., Oh, I. Y., Nguyen, N. M., Ko, A., Choi, J. W., Jeong, Y., Jung, M. H., Cho, W. G., Xu, S., Park, K. S., Park, W. J., Choi, S. Y., Kim, H. S., Moh, S. H., & Kim, K. W. (2015). Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology, 156(1), 157–168. https://doi.org/10.1210/en.2014-1354
Eid, H. M., Nachar, A., Thong, F., Sweeney, G., & Haddad, P. S. (2015). The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacognosy Magazine, 11(41), 74–81. https://doi.org/10.4103/0973-1296.149708
Eshwarappa, R. S. B., Iyer, R. S., Subbaramaiah, S. R., Richard, S. A., & Dhananjaya, B. L. (2014). Antioxidant activity of Syzygium cumini leaf gall extracts. BioImpacts, 4(2), 101–107. https://doi.org/10.5681/bi.2014.018
Ezzat, S. M., Motaal, A. A., & El Awdan, S. A. W. (2017). In vitro and in vivo antidiabetic potential of extracts and a furostanol saponin from Balanites aegyptiaca. Pharmaceutical Biology, 55(1), 1931–1936. https://doi.org/10.1080/13880209.2017.1343358
Farbood, Y., Rashno, M., Ghaderi, S., Khoshnam, S. E., Sarkaki, A., Rashidi, K., Rashno, M., & Badavi, M. (2019). Ellagic acid protects against diabetes-associated behavioral deficits in rats: Possible involved mechanisms. Life Sciences, 225, 8–19. https://doi.org/10.1016/j.lfs.2019.03.078
Garg, S., Ghosh, P., Rana, S. S., & Pradhan, R. C. (2019). Preparation and Quality Evaluation of Nutritionally Enriched Jam Made from Blends of Indian Blackberry and Other Fruits. International Journal of Fruit Science, 19(1), 29–44. https://doi.org/10.1080/15538362.2018.1536872
Gavillán-Suárez, J., Aguilar-Perez, A., Rivera-Ortiz, N., Rodríguez-Tirado, K., Figueroa-Cuilan, W., Morales-Santiago, L., Maldonado-Martínez, G., Cubano, L. A., & Martínez-Montemayor, M. M. (2015). Chemical profile and in vivo hypoglycemic effects of Syzygium jambos, Costus speciosus and Tapeinochilos ananassae plant extracts used as diabetes adjuvants in Puerto Rico. BMC Complementary and Alternative Medicine, 15, 244. https://doi.org/10.1186/s12906-015-0772-7
Grenier, D., Chen, H., Lagha, A. Ben, Fournier-Larente, J., & Morin, M. P. (2015). Dual action of myricetin on Porphyromonas gingivalis and the inflammatory response of host cells: A promising therapeutic molecule for periodontal diseases. PLoS ONE, 10(6), 1–14. https://doi.org/10.1371/journal.pone.0131758
Hooijmans, C. R., Rovers, M. M., De Vries, R. B. M., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14(1), 1–9. https://doi.org/10.1186/1471-2288-14-43
IDF. (2021). IDF Diabetes Atlas. In International Diabetes Federation (10th ed.). https://doi.org/10.1016/j.diabres.2013.10.013
Ighodaro, O. M., Adeosun, A. M., Asejeje, F. O., Soetan, G. O., & Kassim, O. O. (2018). Time course effects of 5,5-dihydroxyl pyrimidine-2,4,6-trione (alloxan) as a diabetogenic agent in animal model. Alexandria Journal of Medicine, 54(4), 705–710. https://doi.org/10.1016/j.ajme.2018.05.005
Kapoor, S., & Ranote, P. S. (2016). Antioxidant components and physico-chemical characteristics of jamun powder supplemented pear juice. Journal of Food Science and Technology, 53(5), 2307–2316. https://doi.org/10.1007/s13197-016-2196-x
Karunakaran, U., Elumalai, S., Moon, J. S., Jeon, J. H., Kim, N. D., Park, K. G., Won, K. C., Leem, J., & Lee, I. K. (2019). Myricetin Protects Against High Glucose-Induced β-Cell Apoptosis by Attenuating Endoplasmic Reticulum Stress via Inactivation of Cyclin-Dependent Kinase 5. Diabetes & Metabolism Journal, 43(2), 192–205. https://doi.org/10.4093/DMJ.2018.0052
Kumar Issac, P., Jayaseelan, A., Chandrakumar, S., Jaiganesh, S., Snehaa Chandrakumar, S., & Sundaresan, S. (2018). Tannins of Jatropha Gossypifolia Exert Anti-Hyperlipidemic Effect in Streptozotocin-Nicotinamide Induced Diabetic Rats. European Journal of Biomedical AND Pharmaceutical Sciences, 5(2), 607–614.
Kwon, D. Y., Kim, Y. S., Ryu, S. Y., Choi, Y. H., Cha, M. R., Yang, H. J., & Park, S. (2012). Platyconic acid, a saponin from Platycodi radix, improves glucose homeostasis by enhancing insulin sensitivity in vitro and in vivo. European Journal of Nutrition, 51(5), 529–540. https://doi.org/10.1007/s00394-011-0236-x
Liu, Y., Mu, S., Chen, W., Liu, S., Cong, Y., Liu, J., & Jia, N. (2021). Saponins of Momordica charantia increase insulin secretion in INS-1 pancreatic β-cells via the PI3K/Akt/FoxO1 signaling pathway. Endocrinología, Diabetes y Nutrición, 68(5), 329–337. https://doi.org/10.1016/J.ENDINU.2020.05.005
Mohamed, A. A., Ali, S. I., & El-Baz, F. K. (2013). Antioxidant and Antibacterial Activities of Crude Extracts and Essential Oils of Syzygium cumini Leaves. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0060269
Moini, J., Adams, M., & LoGalbo, A. (2022). Complications of Diabetes Mellitus: A Global Perspective (1st Editio). CRC Press. https://doi.org/https://doi.org/10.1201/9781003226727
Nadig, P., Asanaliyar, M., & Salis, K. M. (2021). Establishment of long-term high-fat diet and low dose streptozotocin-induced experimental type-2 diabetes mellitus model of insulin resistance and evaluation of seed extracts of Syzygium cumini. Journal of HerbMed Pharmacology, 10(3), 331–338. https://doi.org/10.34172/jhp.2021.38
Narmatha, M., & Maneemegalai, S. (2019). An In-Vitro Study of Syzygium cumini Seed Extract on Glucose Uptake Activity in L-6 Cell Lines. Journal of Drug Delivery and Therapeutics, 9, 256–259.
Oecd. (2001). OECD/OCDE 423 OECD Guideline for Testing of Chemicals Acute Oral Toxicity-Acute Toxic Class Method.
Oguntibeju, O. O., Aboua, Y., & Kachepe, P. (2020). Possible therapeutic effects of vindoline on testicular and epididymal function in diabetes-induced oxidative stress male Wistar rats. Heliyon, 6(4), e03817. https://doi.org/10.1016/j.heliyon.2020.e03817
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71
Pant, D. R., Pant, N. D., Saru, D. B., Yadav, U. N., & Khanal, D. P. (2017). Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of pterocarpus marsupium roxburgh. Journal of Intercultural Ethnopharmacology, 6(2), 170–176. https://doi.org/10.5455/jice.20170403094055
Patil, S. S., Thorat, R. M., & Rajasekaran, P. (2012). Utilization of Jamun Fruit (Syzygium cumini) for Production of Red Wine. Journal of Advanced Laboratory Research in Biology, 2(2), 200–203.
Pereira, A. P. A., Fernando Figueiredo Angolini, C., de Souza-Sporkens, J. C., da Silva, T. A., Coutinho Franco de Oliveira, H., & Pastore, G. M. (2021). Brazilian sunberry (Solanum oocarpum Sendtn): Alkaloid composition and improvement of mitochondrial functionality and insulin secretion of INS-1E cells. Food Research International, 148(May), 110589. https://doi.org/10.1016/j.foodres.2021.110589
Polce, S. A., Burke, C., França, L. M., Kramer, B., Paes, A. M. de A., & Carrillo-Sepulveda, M. A. (2018). Ellagic acid alleviates hepatic oxidative stress and insulin resistance in diabetic female rats. Nutrients, 10(5), 1–15. https://doi.org/10.3390/nu10050531
Prabakaran, K., & Shanmugave, G. (2018). Antidiabetic Activity and Phytochemical Constituents of Syzygium cumini Seeds in Puducherry Region, South India. International Journal of Pharmacognosy and Phytochemical Research, 9(07). https://doi.org/10.25258/phyto.v9i07.11168
Proma, N. M., Naima, J., Islam, M. R., Alam Papel, J., Rahman, M. M., & Hossain, M. K. (2018). Phytochemical Constituents and Antidiabetic Properties of Syzygium Cumini Linn. Seed. International Journal of Pharmaceutical Sciences and Research, 9(5), 1806. https://doi.org/10.13040/IJPSR.0975-8232.9(5).1806-14
Saifi, A., Chauhan, R., & Dwivedi, J. (2016). Assessment of the antidiabetic activity of Syzygium cumini (Linn.) Skeels in alloxan induced diabetic rats . Research Journal of Pharmacology and Pharmacodynamics, 8(3), 91. https://doi.org/10.5958/2321-5836.2016.00017.3
Sampath, S., Narasimhan, A., Chinta, R., Nair, K. R. J., Khurana, A., Nayak, D., Kumar, A., & Karundevi, B. (2013). Effect of homeopathic preparations of Syzygium jambolanum and Cephalandra indica on gastrocnemius muscle of high fat and high fructose-induced type-2 diabetic rats. Homeopathy, 102(3), 160–171. https://doi.org/10.1016/j.homp.2013.05.002
Sanches, J. R., França, L. M., Chagas, V. T., Gaspar, R. S., Dos Santos, K. A., Gonçalves, L. M., Sloboda, D. M., Holloway, A. C., Dutra, R. P., Carneiro, E. M., Cappelli, A. P. G., & Paes, A. M. de A. (2016). Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats. Frontiers in Pharmacology, 7, 48. https://doi.org/10.3389/fphar.2016.00048
Sari, A. N., Januardi, J., & Diningrat, D. S. (2020). Effect of Ethanol Extract of Jamblang Aceh (Syzygium cumini) in Diabetic Mice (Mus musculus) and Its Potential As Anti-Diabetic Agent. Elkawnie, 6(1), 37. https://doi.org/10.22373/ekw.v6i1.5496
Sharma, B., Siddiqui, M. S., Kumar, S. S., Ram, G., & Chaudhary, M. (2013). Liver protective effects of aqueous extract of Syzygium cumini in Swiss albino mice on alloxan induced diabetes mellitus. Journal of Pharmacy Research, 6(8), 853–858. https://doi.org/https://doi.org/10.1016/j.jopr.2013.07.020
Sharma, B., Siddiqui, M. S., Kumar, S. S., Ram, G., & Chaudhary, M. (2017). Pharmacological evaluation of aqueous extract of syzigium cumini for its antihyperglycemic and antidyslipidemic properties in diabetic rats fed a high cholesterol diet-Role of PPARγ and PPARα. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 89, 447–453. https://doi.org/10.1016/j.biopha.2017.02.048
Sharma, K. A., Bharti, S., Kumar, R., Krishnamurthy, B., Bhatia, J., Kumari, S., & Arya, D. S. (2012). Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats. Journal of Pharmacological Sciences, 119(3), 205–213. https://doi.org/10.1254/jphs.11184fp
Shukla, A., & Srinivasan, B. P. (2012). 16,17-Dihydro-17b-hydroxy isomitraphylline alkaloid as an inhibitor of DPP-IV, and its effect on incretin hormone and β-cell proliferation in diabetic rat. In European Journal of Pharmaceutical Sciences (Vol. 47, Issue 2, pp. 512–519). https://doi.org/10.1016/j.ejps.2012.07.012
Silva, S. do N., Abreu, I. C., Silva, G. F. C., Ribeiro, R. M., Lopes, A. de S., Cartágenes, M. do S. de S., Freire, S. M. de F., Borges, A. C. R., & Borges, M. O. da R. (2011). The toxicity evaluation of Syzygium cumini leaves in rodents. Revista Brasileira de Farmacognosia, 22(1), 102–108. https://doi.org/10.1590/S0102-695X2011005000181
Takemoto, K., Doi, W., & Masuoka, N. (2016). Protective effect of vitamin E against alloxan-induced mouse hyperglycemia. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1862(4), 647–650. https://doi.org/10.1016/j.bbadis.2015.12.022
Tara, J., Shrestha, M., Shrestha, H., Prajapati, M., Karkee, A., & Maharjan, A. (2017). Adverse Effects of Oral Hypoglycemic Agents and Adherence to them among Patients with Type 2 Diabetes Mellitus in Nepal. Journal of Lumbini Medical College, 5(1), 34–40. https://doi.org/10.22502/JLMC.V5I1.126
Tripathi, A. K., & Kohli, S. (2014a). Pharmacognostical standardization and antidiabetic activity of Syzygium cumini (Linn.) barks (Myrtaceae) on streptozotocin-induced diabetic rats. Journal of Complementary and Integrative Medicine, 11(2), 71–81. https://doi.org/10.1515/jcim-2014-0011
Velayutham, R., Sankaradoss, N., & Ahamed, K. N. (2012). Protective effect of tannins from Ficus racemosa in hypercholesterolemia and diabetes induced vascular tissue damage in rats. Asian Pacific Journal of Tropical Medicine, 5(5), 367–373. https://doi.org/10.1016/S1995-7645(12)60061-3
Wang, Q., Wang, S. ting, Yang, X., You, P. pan, & Zhang, W. (2015). Myricetin suppresses differentiation of 3 T3-L1 preadipocytes and enhances lipolysis in adipocytes. Nutrition Research, 35(4), 317–327. https://doi.org/10.1016/j.nutres.2014.12.009
Wells, B. G., DiPiro, J. T., Schwinghammer, T. L., & DiPiro, C. V. (2015). Pharmacotherapy Handbook: Ninth Edition. ninth.
Xu, J., Wang, S., Feng, T., Chen, Y., & Yang, G. (2018). Hypoglycemic and hypolipidemic effects of total saponins from Stauntonia chinensis in diabetic db/db mice. Journal of Cellular and Molecular Medicine, 22(12), 6026–6038. https://doi.org/10.1111/jcmm.13876
Yasodamma, N., & Alekhya, C. (2013). Antidiabetic Activity of Sebastiania chamaelea Muell. Arg. Leaf Extracts in Alloxan Induced Diabetic Albino Rats. International Journal of Pharmacy and Pharmaceutical Sciences, 5(3), 577–583.
Yessoufou, A., Gbenou, J., Grissa, O., Hichami, A., Simonin, A. M., Tabka, Z., Moudachirou, M., Moutairou, K., & Khan, N. A. (2013). Anti-hyperglycemic effects of three medicinal plants in diabetic pregnancy: Modulation of T cell proliferation. BMC Complementary and Alternative Medicine, 13. https://doi.org/10.1186/1472-6882-13-77
Zhang, H., Hui, J., Yang, J., Deng, J., & Fan, D. (2020). Eurocristatine, a plant alkaloid from Eurotium cristatum, alleviates insulin resistance in db/db diabetic mice via activation of PI3K/AKT signaling pathway. European Journal of Pharmacology, 887(September), 173557. https://doi.org/10.1016/j.ejphar.2020.173557
Zheng, B., Su, B., Price, G., Tzoulaki, I., Ahmadi-Abhari, S., & Middleton, L. (2021). Glycemic control, diabetic complications, and risk of dementia in patients with diabetes: Results from a large U.K. cohort study. Diabetes Care, 44(7), 1556–1563. https://doi.org/10.2337/dc20-2850