Potential drug interaction of corticosteroids and symptomatic therapy in COVID-19 patients in RSUD Banyumas, Indonesia
Abstract
Corticosteroids may interact with another drug used in COVID-19 treatment. Drug-drug interactions can diminish the efficacy of drugs in the body, necessitating proper management. This study aimed to identify potential drug interactions in COVID-19 therapy at Banyumas Hospital, Indonesia. This study implemented descriptive observational methodology with a retrospective design. The study included all COVID-19 inpatients at the Banyumas Hospital between June 2020 and June 2021. Potential drug interactions were analyzed using the Drugs Interaction Checker on Drugs.com and Lexicomp on UpToDate. Among 334 patients, pharmacokinetics (189 cases, 38.10%), pharmacodynamics (264 cases, 53.23%), and unknown (44 cases, 8.87%) drug interaction may occur. Based on the severity, the potential for drug interactions were classified as significant (50 cases, 10.08%), moderate (204 cases, 41.13%), and minor (243 cases, 48.1%). Patients with COVID-19 are at risk for potential drug interactions, most of which cannot be avoided. It is important to select appropriate drug uses and manage therapy appropriately to reduce the incidence of potential drug interactions.
References
https://doi.org/10.5958/0974-360X.2016.00051.2
Bayat, V., Ryono, R., Phelps, S., Geis, E., Sedghi, F., Etminani, P., Holodniy, M., 2021. Reduced Mortality With Ondansetron Use in SARS-CoV-2-Infected Inpatients. Open Forum Infect. Dis. 8, ofab336. doi:10.1093/ofid/ofab336
https://doi.org/10.1093/ofid/ofab336
Bhosale, U.A., Khobragade, R., Naik, C., Yegnanarayan, R., Kale, J., 2014. Postoperative pharmacodynamic interaction of ondansetron; a 5-HT3 antagonist and paracetamol in patients operated in the ENT department under local anesthesia. J. Basic Clin. Pharm. 5, 84-86. doi:10.4103/0976-0105.139732
https://doi.org/10.4103/0976-0105.139732
Bwire, G.M., 2020. Coronavirus: Why Men are More Vulnerable to Covid-19 Than Women? SN Compr. Clin. Med. 2, 874-876. doi:10.1007/s42399-020-00341-w
https://doi.org/10.1007/s42399-020-00341-w
Gavriatopoulou, M., Ntanasis-Stathopoulos, I., Korompoki, E., Fotiou, D., Migkou, M., Tzanninis, I.-G., Psaltopoulou, T., Kastritis, E., Terpos, E., Dimopoulos, M.A., 2021. Emerging treatment strategies for COVID-19 infection. Clin Exp Med 21, 167-179. doi:10.1007/s10238-020-00671-y
https://doi.org/10.1007/s10238-020-00671-y
Gibson, P.G., Qin, L., Puah, S.H., 2020. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. Med. J. Aust. 213, 54-56.e1. doi:10.5694/mja2.50674
https://doi.org/10.5694/mja2.50674
Hodge, C., Marra, F., Marzolini, C., Boyle, A., Gibbons, S., Siccardi, M., Burger, D., Back, D., Khoo, S., 2020. Drug interactions: a review of the unseen danger of experimental COVID-19 therapies. J. Antimicrob. Chemother. 75, 3417-3424. doi:10.1093/jac/dkaa340
https://doi.org/10.1093/jac/dkaa340
Iloanusi, S., Mgbere, O., Essien, E.J., 2021. Polypharmacy among COVID-19 patients: A systematic review. J. Am. Pharm. Assoc. (2003) 61, e14-e25. doi:10.1016/j.japh.2021.05.006
https://doi.org/10.1016/j.japh.2021.05.006
Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., Hsueh, P.-R., 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 55, 105924. doi:10.1016/j.ijantimicag.2020.105924
https://doi.org/10.1016/j.ijantimicag.2020.105924
Leal, N.S., Yu, Y., Chen, Y., Fedele, G., Martins, L.M., 2021. Paracetamol Is Associated with a Lower Risk of COVID-19 Infection and Decreased ACE2 Protein Expression: A Retrospective Analysis. COVID 1, 218-229. doi:10.3390/covid1010018
https://doi.org/10.3390/covid1010018
Lemaitre, F., Solas, C., Grégoire, M., Lagarce, L., Elens, L., Polard, E., Saint-Salvi, B., Sommet, A., Tod, M., Barin-Le Guellec, C., French Society of Pharmacology, Therapeutics (SFPT), the International Association of Therapeutic Drug Monitoring, Clinical Toxicology (IATDMCT), 2020. Potential drug-drug interactions associated with drugs currently proposed for COVID-19 treatment in patients receiving other treatments. Fundam Clin Pharmacol 34, 530-547. doi:10.1111/fcp.12586
https://doi.org/10.1111/fcp.12586
Mattos-Silva, P., Felix, N.S., Silva, P.L., Robba, C., Battaglini, D., Pelosi, P., Rocco, P.R.M., Cruz, F.F., 2020. Pros and cons of corticosteroid therapy for COVID-19 patients. Respir. Physiol. Neurobiol. 280, 103492. doi:10.1016/j.resp.2020.103492
https://doi.org/10.1016/j.resp.2020.103492
McKechnie, K., Froese, A., 2010. Ventricular tachycardia after ondansetron administration in a child with undiagnosed long QT syndrome. Can. J. Anaesth. 57, 453-457. doi:10.1007/s12630-010-9288-2
https://doi.org/10.1007/s12630-010-9288-2
Meng, X., Deng, Y., Dai, Z., Meng, Z., 2020. COVID-19 and anosmia: A review based on up-to-date knowledge. Am. J. Otolaryngol. 41, 102581. doi:10.1016/j.amjoto.2020.102581
https://doi.org/10.1016/j.amjoto.2020.102581
Nachimuthu, S., Assar, M.D., Schussler, J.M., 2012. Drug-induced QT interval prolongation: mechanisms and clinical management. Ther. Adv. Drug Saf. 3, 241-253. doi:10.1177/2042098612454283
https://doi.org/10.1177/2042098612454283
Nawawi, M.I., Pathuddin, H., Masrifah, R., 2021. Description of the relationship between gender and patients status of covid-19 in indonesia. Jukema 7, 76-81. doi:10.37598/jukema.v7i1.1069
https://doi.org/10.37598/jukema.v7i1.1069
Noreen, S., Maqbool, I., Madni, A., 2021. Dexamethasone: Therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur. J. Pharmacol. 894, 173854. doi:10.1016/j.ejphar.2021.173854
https://doi.org/10.1016/j.ejphar.2021.173854
Pakkir Maideen, N.M., Jumale, A., Balasubramaniam, R., 2017. Drug interactions of metformin involving drug transporter proteins. Adv Pharm Bull 7, 501-505. doi:10.15171/apb.2017.062
https://doi.org/10.15171/apb.2017.062
Preston, C.L. (Ed.), 2014. Stockley's Drug Interactions Pocket Companion 2014, Revised edition. ed. Pharmaceutical Press.
Ragab, M.A.A., 2013. Effect of metoclopramide on the excretion rate of paracetamol using HPLC-DAD. J Chromatogr Sci 51, 383-390. doi:10.1093/chromsci/bms152
https://doi.org/10.1093/chromsci/bms152
Rahman, S., Bahar, T., 2020. COVID-19: The New Threat. Int. J. Infect. 7. doi:10.5812/iji.102184
https://doi.org/10.5812/iji.102184
Ray, A., Sharma, S., Sadasivam, B., 2020. The Potential Therapeutic Role of Proton Pump Inhibitors in COVID-19: Hypotheses Based on Existing Evidences. Drug Res. (Stuttg) 70, 484-488. doi:10.1055/a-1236-3041
https://doi.org/10.1055/a-1236-3041
Rezaee, H., Pourkarim, F., Pourtaghi-Anvarian, S., Entezari-Maleki, T., Asvadi-Kermani, T., Nouri-Vaskeh, M., 2021. Drug-drug interactions with candidate medications used for COVID-19 treatment: An overview. Pharmacol. Res. Perspect. 9, e00705. doi:10.1002/prp2.705
https://doi.org/10.1002/prp2.705
Sendzik, J., Shakibaei, M., Schäfer-Korting, M., Lode, H., Stahlmann, R., 2010. Synergistic effects of dexamethasone and quinolones on human-derived tendon cells. Int. J. Antimicrob. Agents 35, 366-374. doi:10.1016/j.ijantimicag.2009.10.009
https://doi.org/10.1016/j.ijantimicag.2009.10.009
Shahbazi, F., Solgi, M., Khazaei, S., 2020. Predisposing risk factors for COVID-19 infection: A case-control study. Caspian J Intern Med 11, 495-500. doi:10.22088/cjim.11.0.495
Zhao, Y., Harmatz, J.S., Epstein, C.R., Nakagawa, Y., Kurosaki, C., Nakamura, T., Kadota, T., Giesing, D., Court, M.H., Greenblatt, D.J., 2015. Favipiravir inhibits acetaminophen sulfate formation but minimally affects systemic pharmacokinetics of acetaminophen. Br. J. Clin. Pharmacol. 80, 1076-1085. doi:10.1111/bcp.12644
https://doi.org/10.1111/bcp.12644