Potential of Macroalgae for Anti Alopecia: A Systematic Review
Abstract
Alopecia or baldness is a disease where the amount of hair that falls out is greater than the hair that grows. The most common alopecias are androgenetic alopecia (AGA) and alopecia areata (AA). Macroalgae contain secondary metabolites that have quite large ecological potential that can be utilized, namely red algae (Rhodophyta), green algae (Chlorophyta), and brown algae (Phaeophyta). Bioactive components one of the benefits of this macroalgae is as anti-alopecia. The purpose of this review article is to discuss a summary of the mechanisms of action of macroalgae with their active compounds for the treatment of alopecia by stimulating hair growth in hair follicles. This review uses the literature study method of several articles from the online databases PubMed, Sciencedirect, Google Scholar in the form of secondary data analysis with the keywords "algae for androgenetic alopecia and algae for alopecia". The results of this review presented 18 articles on different types of algae, which have the potential to become alternative anti- alopecia drugs with different mechanisms of action. From this review of macroalgae, it is hoped that it can be developed into an anti-alopecia herbal medicinal product.
References
André, R., Pacheco, R., Bourbon, M., & Serralheiro, M. L. (2021). Brown algae potential as a functional food against hypercholesterolemia: Review. Foods, 10(2). https://doi.org/10.3390/foods10020234
Aoki, M., Hecht, A., Kruse, U., Kemler, R., & Vogt, P. K. (1999). Nuclear endpoint of Wnt signaling: Neoplastic transformation induced by transactivating lymphoid-enhancing factor 1. Proceedings of the National Academy of Sciences of the United States of America, 96(1139–144. https: // doi.org/ 10.1073/pnas.96.1.139
Ashique, S., Sandhu, N. K., Haque, S. N., & Koley, K. (2020). A Systemic Review on Topical Marketed Formulations, Natural Products, and Oral Supplements to Prevent Androgenic Alopecia: A Review. Natural Products and Bioprospecting, 10(6), 345–365. https://doi.org/10.1007/s13659-020- 00267-9
Ayuningtyas, D. dan M. L. (2018). Peranan Follicular Unit Grafting Dalam Mengatasi Alopeca. 1–13.
Bak, S. S., Ahn, B. N., Kim, J. A., Shin, S. H., Kim, J. C., Kim, M. K., Sung, Y. K., & Kim, S. K. (2013). Ecklonia cava promotes hair growth. 904–910. https://doi.org/10.1111/ced.12120
Bak, S. S., Sung, Y. K., & Kim, S. K. (2014). 7- Phloroeckol promotes hair growth on human follicles in vitro. Naunyn-Schmiedeberg’s Archives of Pharmacology, 387(8), 789–793. https://doi.org/10.1007/s00210-014-0986-0
Choi, B. Y. (2020). Targeting wnt/β-catenin pathway for developing therapies for hairloss. In International Journal of Molecular Sciences (Vol. 21, Issue 14, pp. 1–16). https://doi.org/ 10.3390/ijms21144915
Danilenko, D. M., Ring, B. D., Yanagihara, D., Benson, W., Wiemann, B., Starnes, C. O., & Pierce, G. F. (1995). Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation: Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. American Journal of Pathology, 147(1), 145–154.
Danilenko, M., Ring, D., & Pierce, F. (1996). Growth factors and cytokines in insights from and the potentials. Molecular Medicine Today, 2(11), 460–467.
Festi, J. & A. L. (2022). Identifikasi jenis-jenis makroalga di perairan pantai sombano kabupaten wakatobi. Jurnal Penelitian Biologi Dan Kependidikan, 1(1), 11–24.
Gnann, L. A., Castro, R. F., Azzalis, L. A., Feder, D., Perazzo, F. F., Pereira, E. C., Rosa, P. C. P., Junqueira, V. B. C., Rocha, K. C., Machado, C. D. A., Paschoal, F. C., de Abreu, L. C., Valenti, V. E.,
& Fonseca, F. L. A. (2013). Hematological and hepatic effects of vascular epidermal growth factor (VEGF) used to stimulate hair growth in an animal model. BMC Dermatology, 13, 2–
6. https://doi.org/10.1186/1471-5945-13-15
Hansen, L. A., Alexander, N., Hogan, M. E., Sundberg, J. P., Dlugosz, A., Threadgill, D. W., Magnuson, T., & Yuspa, S. H. (1997). Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development. American Journal of Pathology, 150(6), 1959–1975.
Hardy, M. H. (1992). The secret life of the hair follicle. Trends in Genetics, 8(2), 55–61. https://doi.org/10.1016/01689525(92)90350-D
Herman, A., & Herman, A. P. (2016). Mechanism of action of herbs and their active constituents used in hair loss treatment. Fitoterapia, 114, 18–25. https://doi.org/10.1016/j.fitote.2016.08.08
Hiipakka, R. A., Zhang, H. Z., Dai, W., Dai, Q., & Liao, S. (2002). Structure-activity relationships for inhibition of human 5α-reductases by polyphenols Biochemical Pharmacology 63(6), 1165-1176.
https://doi.org/10.1016/S0006-2952(02)00848-1
Huang. C-Yu, Huang. C-Yen, Yang. C, L. ., & Chang.J. (2022). Hair growth-promoting effects of Sargassum glaucescens oligosaccharides extracts. Journal of the Taiwan Institute of Chemical Engineers, 134, 104307. https://doi.org/10.1016/j.jtice.2022.104307
Huang, C. Y., Huang, C. Y., Yang, C. C., Lee, T. M., & Chang, J. S. (2022). Hair growth-promoting effects of Sargassum glaucescens oligosaccharides extracts. Journal of the Taiwan Institute of Chemical Engineers, 134, 104307. https://doi.org/10.1016/j.jtice.2022.104307
Jung-Il Kang, Jungeun Kim, Sang-Cheol Kim, Sang- Chul Han, Ji-Hyeok Lee, J. L., & Euijun Noh,
You-Jin Jeon, Eun-Sook Yoo, and H.-K. K.
(2020). The Effect of Glucopyranosyldiacylglycerol from padina.pdf. Kor. J. Pharmacogn., 51, 41–48.
Kang. Jung Il, Kim. Sang Cheol, K. M. K., & Boo. Hye Jin, Jeon. You Jin, Koh. Sang Young, Yoo. Eun Sook, Kang. Sung Myung, K. H. K. (2012). Effect of dieckol, a component of ecklonia cava, on the promotion of hair growth. International Journal of Molecular Sciences, 13(5), 6407–6423. https://doi.org/
10.3390/ijms13056407
Kang, J. Il, Kim, J., Kim, S. C., Han, S. C., Lee, J. H., Lee, J., Noh, E., Jeon, Y. J., Yoo, E. S., & Kang, H. K. (2020). The effect of Glucopyranosyldiacylglycerol from Padina arborescens on the prevention of hair-loss. Korean Journal of Pharmacognosy, 51(1), 41–48.
Kang, J. Il, Kim, M. K., Lee, J. H., Jeon, Y. J., Hwang, E. K., Koh, Y. S., Hyun, J. W., Kwon, S. Y., Yoo, E. S., & Kang, H. K. (2017). Undariopsis peterseniana promotes hair growth by the activation of Wnt/β-catenin and ERK pathways. Marine Drugs, 15(5). https://doi.org/10.3390/md15050130
Kang, J., Choi, Y. K., Han, S., Nam, H., Lee, G., Kang, J., Koh, Y. S., Hyun, J. W., Yoo, E., & Kang, H. (2022). 5-Bromo-3,4-dihydroxybenzaldehyde Promotes Hair Growth through Activation of Wnt/ -Catenin and Autophagy Pathways and Inhibition of TGF- Pathways in Dermal Papilla Cell.
Kang, J., Kim, E., Kim, M., Jeon, Y., & Kang, S. (2013). The Promoting Effect of Ishige sinicola on Hair
Growth. 1783–1799. https://doi.org/10.3390/md11061783
Kang, J., Kim, S. C., Han, S. C., Hong, H. J., Jeon, Y. J., Kim, B., Koh, Y. S., Yoo, E. S., & Kang, H. K. (2012). Hair-loss preventing effect of Grateloupia elliptica. Biomolecules and Therapeutics, 20(1), 118–120. https://doi.org/10.4062/biomolther.2012.2 0.1.118
Kang, J., Kim, S., Kim, M., Boo, H., & Jeon, Y. (2012). Effect of Dieckol , a Component of Ecklonia cava , on the Promotion of Hair Growth. 0067, 6407–6423. https://doi.org/10.3390/ijms13056407
Kang, J., Yoo, E., Hyun, J., Koh, Y., Lee, H., Ko, M., Ko, C., & Kang, H. (2016). Promotion Effect of Apo-
9 ′ -fucoxanthinone from Sargassum muticum on Hair Growth via the Activation of Wnt / β - Catenin and VEGF-R2. 39(8), 1273–1283.
Lachgar, S., Charveron, M., Gall, Y., & Bonafe, J. L. (1998). Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells. British Journal of Dermatology, 138(3), 407–411. https://doi.org/10.1046/j.1365-2133.1998.02115.x
Lee, S.W., Juhasz, M., Mobasher, P., Chloe Ekelem, C. and Mesinkovska, N. A. (2018). A Systematic Review of Topical Finasteride in the Treatment of Androgenetic Alopecia in Men and Women. J Drugs Dermatol, 17(1), 457–463.
Lee. Y.R, Bae. S, Kim. J.Y, Lee. J, Cho. D-Hyun, Kim. Hee-sik, An. In-sook, A. S. (2019). Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the AKT/ β -Catenin Signaling Pathway. 29, 1830–1840.
Lestari, I. L., & Mita, S. R. (2013). Review: Potensi Alga Laut dan Kandungan Senyawa Biologisnya Sebagai Bahan Baku Kosmeseutikal. Farmaka, 14(1), 114–126.
Lolli, F., Pallotti, F., Rossi, A., Fortuna, M. C., Caro, G.,
Lenzi, A., Sansone, A., & Lombardo, F. (2017). Androgenetic alopecia: a review. Endocrine,
57(1), 9–17.https://doi.org/10.1007/s12020-017-1280- y
Mak, K. K. L., & Chan, S. Y. (2003). Epidermal growth factor as a biologic switch in hair growth
cycle. Journal of Biological Chemistry,278(28), 26120–26126. https://doi.org/
10.1074/jbc.M212082200
Meidan, V. M., & Touitou, E. (2001). Treatments for androgenetic alopecia and alopecia areata: Current options and future prospects. Drug 61(1), 53–69. https://doi.org/10.2165/00003495- 200161010-00006
Miele, C., Rochford, J. J., Filippa, N., Giorgetti- Peraldi, S., & Van Obberghen, E. (2000). Insulin and insulin-like growth factor-I induce vascular endothelial growth factor mRNA expression via different signaling pathways. Journal of Biological Chemistry, 275(28), 21695–21702. https://doi.org/10.1074 /jbc.M000805200
Neri, T.A, Grace N. Palmos. G.N, Park, S.Y, Jung. T.S, and C. B. D. (2022). Hair Growth-Promoting Activities of Glycosaminoglycans Extracted from the Tunics of Ascidian ( Halocynthia roretzi ).
Oliva, A. K., Bejaoui, M., Hirano, A., Arimura, T., Linh, T. N., Uchiage, E., Nukaga, S., Tominaga, K., Nozaki, H., & Isoda, H. (2022). Elucidation of the Potential Hair Growth-Promoting Effect of Botryococcus terribilis, Its Novel Compound Methylated-Meijicoccene, and C32 Botryococcene on Cultured Hair Follicle Dermal Papilla Cells Using DNA Microarray Gene Expression Analysis. Biomedicines,
10(5). https://doi.org/10.3390/biomedicines10051186
Ozeki, M., & Tabata, Y. (2003). In vivo promoted growth of mice hair follicles by the controlled release of growth factors. Biomaterials, 24(13), 2387–2394. https://doi.org/10.1016/S0142- 9612(03)00045-0
Park. Ki Soo, P. D. H. (2016). Comparison of Saccharina japonica–Undaria pinnatifida Mixture and Minoxidil on Hair Growth Promoting Effect in Mice.
Park, S. H., Lee, K. D., Ahn, G., Park, H. J., Choi, K. S., Chun, J., & Shim, S. Y. (2021). Microalgae, Tetraselmis tetrathele has Alopecia Prevention and Scalp Improvement. Microbiology and Biotechnology Letters,
49(4), 528–533. https://doi.org/10.48022/mbl.2104.04007
Park, S., & Lee, J. (2021). Modulation of hair growth
promoting effect by natural products. Pharmaceutics, 13(12), 1–24. https://doi.org/10.3390/
pharmaceutics13122163
Patel, S., Sharma, V., Chauhan, N., Thakur, M., & Dixit, V. K. (2015). Hair Growth: Focus on Herbal Therapeutic Agent. Current Drug Discovery Technologies, 12(1), 21–42. https://doi.org/10.2174
/1570163812666150610115055
Paus R, C. G. (2014). The Biology of Hair Follicles.The New England Journal of Medicine, 341(7), 491–497.
Rosenquist, T. A., & Martin, G. R. (1996). Fibroblast Growth Factor Signalling in the Hair Growth Cycle: Expression of the Fibroblast Growth Factor Receptor and Ligand Genes in the Murine Hair Follicle. 386, 379–386.
Ścieszka, S., & Klewicka, E. (2019). Algae in food: a general review. Critical Reviews in Food Science and Nutrition, 59(21), 3538–3547. https://doi.org/10.1080/10408398.2018.1496319
Seok, J., Kim, T. S., Kwon, H. J., Lee, S. P., Kang, M. H., Kim, B. J., & Kim, M. N. (2015). Efficacy of Cistanche Tubulosa and Laminaria Japonica Extracts ( MK-R7 ) Supplement in Preventing Patterned Hair Loss and Promoting Scalp Health. 124–131.
Shin, H., Cho, A., Kim, D. Y., Munkhbayer, S., & Choi, S. (2016). Enhancement of Human Hair Growth Using Ecklonia cava Polyphenols.28(1), 15–21.
Van Mater, D., Kolligs, F. T., Dlugosz, A. A., & Fearon, E. R. (2003). Transient activation of β-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes and Development, 17(10), 1219–1224. https://doi.org/10.1101/gad.1076103
Wang. H.M, L. X.-C., Jong, L. D., & Shu, C. J. (2017).
Potential biomedical applications of marine algae. Bioresource Technology, 244(1), 1407–
1415. https://doi.org/10.1016/j.biortech.2017.05.198
Wolf, R., Schönfelder, G., Paul, M., & Blume-Peytavi, U. (2003). Nitric oxide in the human hair follicle: Constitutive and dihydrotestosterone-induced nitric oxide synthase expression and NO production in dermal papilla cells. Journal of Molecular Medicine, 81(2), 110–117. https://doi.org/10.1007/s00109-002-0402- y
Wu, Z., Zhu, Y., Liu, H., Liu, G., & Li, F. (2020). Wnt10b promotes hair follicles growth and
dermal papilla cells proliferation via Wnt/β- Catenin signaling pathway in Rex rabbits. Bioscience Reports, 40(2), 1–10. https://doi.org/10.1042/BSR20191248
Xu, S. Y., Huang, X., & Cheong, K. L. (2017). Recent advances in marine algae polysaccharides: Isolation, structure, and activities. Marine Drugs, 15(12), 1–16. https://doi.org/10.3390/md15120388
Yano, K., Brown, L. F., & Detmar, M. (2001). Control of hair growth and follicle size by VEGF- mediated angiogenesis. Journal of Clinical Investigation, 107(4), 409–417. https://doi.org/10.1172/JCI11317
Zhang, H., Nan, W., Wang, S., Zhang, T., Si, H., Yang,
F., & Li, G. (2016). Epidermal Growth Factor Promotes Proliferation and Migration of Follicular Outer Root Sheath Cells via Wnt/β- Catenin Signaling. Cellular Physiology and Biochemistry, 39(1), 360–370. https://doi.org/10.1159/000445630
Zheng.L, Liu. Y, T. S., Zhang, W., & Cheong, K. L. (2023). Preparation methods, biological activities, and potential applications of marine algae oligosaccharides: a review. Food Science and Human Wellness, 12(2), 359–370. https://doi.org/10.1016/j.fshw.2022.07.038