Characterization of biochemical and histological of fructose-based high-fat diet and low-dose streptozotocin in type 2 diabetes mellitus rat model

Keywords: Fructose, high-fat diet, streptozotocin, diabetic model, Wistar rats

Abstract

Animal models with valuable information on biochemical profiles are essential for preclinical trials of new antidiabetic agents. This study was to optimize and characterize of high-fat, high-fructose diet (HFFD) and low-dose streptozotocin (STZ) induced type 2 diabetes mellitus (type 2 DM). Wistar rats were fed with HFFD for 2, 4, and 6 weeks, followed by STZ (35 mg/kg BW), thus measuring the biochemical parameters. Non-induction HFFD and STZ were used as a normal control group. HFFD and low-dose STZ-induced rats demonstrated an elevation in the body weight, fasting blood glucose, triglyceride, triglyceride/ glucose index, necrosis score, and the insulin-negative cells. Moreover, this induction also reduced the number of insulin-positive cells and the percentage of insulin-positive cells. The findings imply that feeding Wistar rat HFFD for two weeks, followed by a single dose of STZ at 35 mg/kg BW will result in a reliable and stable diabetic rat model that closely resembles the biochemical characteristics of type 2 DM.

References

Aamir, K., Khan, H. U., Hossain, C. F., Afrin, Mst. R., Jusuf, P. R., Waheed, I., Sethi, G., & Arya, A. (2022). Arjunolic acid downregulates elevated blood sugar and pro-inflammatory cytokines in streptozotocin (STZ)-nicotinamide induced type 2 diabetic rats. Life Sciences, 289, 120232. https://doi.org/10.1016/j.lfs.2021.120232
Abunasef, S. K., Amin, H. A., & Abdel-Hamid, G. A. (2014). A histological and immunohistochemical study of beta cells in streptozotocin diabetic rats treated with caffeine. Folia Histochemica et Cytobiologica, 52(1), 42–50. https://doi.org/10.5603/FHC.2014.0005
Aeberli, I., Hochuli, M., Gerber, P. A., Sze, L., Murer, S. B., Tappy, L., Spinas, G. A., & Berneis, K. (2013). Moderate Amounts of Fructose Consumption Impair Insulin Sensitivity in Healthy Young Men. Diabetes Care, 36(1), 150–156. https://doi.org/10.2337/dc12-0540
Ahmed, I., Adeghate, E., Sharma, A. K., Pallot, D. J., & Singh, J. (1998). Effects of Momordica charantia fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat. Diabetes Research and Clinical Practice, 40(3), 145–151. https://doi.org/10.1016/S0168-8227(98)00022-9
Aldayel, T. S., Alshammari, G. M., Omar, U. M., Grace, M. H., Lila, M. A., & Yahya, M. A. (2020). Hypoglycaemic, insulin releasing, and hepatoprotective effect of the aqueous extract of Aloe perryi Baker resin (Socotran Aloe) in streptozotocin-induced diabetic rats. Journal of Taibah University for Science, 14(1), 1671–1685. https://doi.org/10.1080/16583655.2020.1855859
Antony, P. J., Gandhi, G. R., Stalin, A., Balakrishna, K., Toppo, E., Sivasankaran, K., Ignacimuthu, S., & Al-Dhabi, N. A. (2017). Myoinositol ameliorates high-fat diet and streptozotocin-induced diabetes in rats through promoting insulin receptor signaling. Biomedicine & Pharmacotherapy, 88, 1098–1113. https://doi.org/10.1016/j.biopha.2017.01.170
Arifah, F. H., Nugroho, A. E., Rohman, A., & Sujarwo, W. (2021). A bibliometric analysis of preclinical trials of Andrographis paniculata (Burm.f.) Nees in diabetes mellitus. South African Journal of Botany, S0254629921005287. https://doi.org/10.1016/j.sajb.2021.12.011
Arifah, F. H., Nugroho, A. E., Rohman, A., & Sujarwo, W. (2022). A review of medicinal plants for the treatment of diabetes mellitus: The case of Indonesia. South African Journal of Botany, 149, 537–558. https://doi.org/10.1016/j.sajb.2022.06.042
Badole, S. L., Chaudhari, S. M., Jangam, G. B., Kandhare, A. D., & Bodhankar, S. L. (2015). Cardioprotective Activity of Pongamia pinnata in Streptozotocin-Nicotinamide Induced Diabetic Rats. BioMed Research International, 2015, 1–8. https://doi.org/10.1155/2015/403291
Barrière, D. A., Noll, C., Roussy, G., Lizotte, F., Kessai, A., Kirby, K., Belleville, K., Beaudet, N., Longpré, J.-M., Carpentier, A. C., Geraldes, P., & Sarret, P. (2018). Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Scientific Reports, 8(1), 424. https://doi.org/10.1038/s41598-017-18896-5
Centers for Disease Control and Prevention. (2021). Diabetes Tests. Diabetes Tests. https://www.cdc.gov/diabetes/basics/getting-tested.html#:~:text=A%20fasting%20blood%20sugar%20level,higher%20indicates%20you%20have%20diabetes.
Chandrasekaran, S., Nishanthi, R., & Pugalendi, P. (2018). Ameliorating effect of berbamine on hepatic key enzymes of carbohydrate metabolism in high-fat diet and streptozotocin induced type 2 diabetic rats. Biomedicine & Pharmacotherapy, 103, 539–545. https://doi.org/10.1016/j.biopha.2018.04.066
Chung, J. K.-O., Xue, H., Pang, E. W.-H., & Tam, D. C.-C. (2017). Accuracy of fasting plasma glucose and hemoglobin A1c testing for the early detection of diabetes: A pilot study. Frontiers in Laboratory Medicine, 1(2), 76–81. https://doi.org/10.1016/j.flm.2017.06.002
Dhanavathy, G. (2015). Immunohistochemistry, histopathology, and biomarker studies of swertiamarin, a secoiridoid glycoside, prevents and protects streptozotocin-induced β-cell damage in Wistar rat pancreas. Journal of Endocrinological Investigation, 38(6), 669–684. https://doi.org/10.1007/s40618-015-0243-5
Gheibi, S., Kashfi, K., & Ghasemi, A. (2017). A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomedicine & Pharmacotherapy, 95, 605–613. https://doi.org/10.1016/j.biopha.2017.08.098
Ghelani, H., Razmovski-Naumovski, V., & Nammi, S. (2017). Chronic treatment of (R)- α -lipoic acid reduces blood glucose and lipid levels in high-fat diet and low-dose streptozotocin-induced metabolic syndrome and type 2 diabetes in Sprague-Dawley rats. Pharmacology Research & Perspectives, 5(3), e00306. https://doi.org/10.1002/prp2.306
Ghiasi, R., Soufi, F. G., Somi, M. H., Mohaddes, G., Bavil, F. M., Naderi, R., & Alipour, M. R. (2015). Swim Training Improves HOMA-IR in Type 2 Diabetes Induced by High Fat Diet and Low Dose of Streptozotocin in Male Rats. Advanced Pharmaceutical Bulletin, 5(3), 379–384. https://doi.org/10.15171/apb.2015.052
Gillespie, V., Baer, K., Farrelly, J., Craft, D., & Luong, R. (2011). Canine Gastrointestinal Stromal Tumors: Immunohistochemical Expression of CD34 and Examination of Prognostic Indicators Including Proliferation Markers Ki67 and AgNOR. Veterinary Pathology, 48(1), 283–291. https://doi.org/10.1177/0300985810380397
Guo, X., Wang, Y., Wang, K., Ji, B., & Zhou, F. (2018). Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. Journal of Zhejiang University-SCIENCE B, 19(7), 559–569. https://doi.org/10.1631/jzus.B1700254
Hamadi, N., Mansour, A., Hassan, M. H., Khalifi-Touhami, F., & Badary, O. (2012). Ameliorative effects of resveratrol on liver injury in streptozotocin-induced diabetic rats. Journal of Biochemical and Molecular Toxicology, 26(10), 384–392. https://doi.org/10.1002/jbt.21432
Hirata, A., Maeda, N., Hiuge, A., Hibuse, T., Fujita, K., Okada, T., Kihara, S., Funahashi, T., & Shimomura, I. (2009). Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovascular Research, 84(1), 164–172. https://doi.org/10.1093/cvr/cvp191
Li, S., Huang, Q., Zhang, L., Qiao, X., Zhang, Y., Tang, F., & Li, Z. (2019). Effect of CAPE-pNO2 against type 2 diabetes mellitus via the AMPK/GLUT4/ GSK3β/PPARα pathway in HFD/STZ-induced diabetic mice. European Journal of Pharmacology, 853, 1–10. https://doi.org/10.1016/j.ejphar.2019.03.027
Lima, J. E. B. F., Moreira, N. C. S., & Sakamoto-Hojo, E. T. (2022). Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 874–875, 503437. https://doi.org/10.1016/j.mrgentox.2021.503437
Macho-González, A., López-Oliva, M. E., Merino, J. J., García-Fernández, R. A., Garcimartín, A., Redondo-Castillejo, R., Bastida, S., Sánchez-Muniz, F. J., & Benedí, J. (2020). Carob fruit extract-enriched meat improves pancreatic beta-cell dysfunction, hepatic insulin signaling and lipogenesis in late-stage type 2 diabetes mellitus model. The Journal of Nutritional Biochemistry, 84, 108461. https://doi.org/10.1016/j.jnutbio.2020.108461
Makinde, E. A., Radenahmad, N., Adekoya, A. E., & Olatunji, O. J. (2020). Tiliacora triandra extract possesses antidiabetic effects in high fat diet/streptozotocin‐induced diabetes in rats. Journal of Food Biochemistry, 44(6). https://doi.org/10.1111/jfbc.13239
Mangunsudirdjo, S. (1990). Petunjuk Laboratorium Patologi Anatomik Kedokteran. Fakultas Kedokteran, Universitas Gadjah Mada.
Martinez, K. E., Tucker, L. A., Bailey, B. W., & LeCheminant, J. D. (2017). Expanded Normal Weight Obesity and Insulin Resistance in US Adults of the National Health and Nutrition Examination Survey. Journal of Diabetes Research, 2017, 1–8. https://doi.org/10.1155/2017/9502643
Medipath Science Indonesia. (2022). Prosedur Pulasan IHK. PT Medipath Science Indonesia.
Motshakeri, M., Ebrahimi, M., Goh, Y. M., Othman, H. H., Hair-Bejo, M., & Mohamed, S. (2014). Effects of Brown Seaweed (Sargassum polycystum) Extracts on Kidney, Liver, and Pancreas of Type 2 Diabetic Rat Model. Evidence-Based Complementary and Alternative Medicine, 2014, 1–11. https://doi.org/10.1155/2014/379407
Okoduwa, S. I. R., Umar, I. A., James, D. B., & Inuwa, H. M. (2017). Appropriate Insulin Level in Selecting Fortified Diet-Fed, Streptozotocin-Treated Rat Model of Type 2 Diabetes for Anti-Diabetic Studies. PLOS ONE, 12(1), e0170971. https://doi.org/10.1371/journal.pone.0170971
Park, H. M., Lee, H. S., Lee, Y.-J., & Lee, J.-H. (2021). The triglyceride–glucose index is a more powerful surrogate marker for predicting the prevalence and incidence of type 2 diabetes mellitus than the homeostatic model assessment of insulin resistance. Diabetes Research and Clinical Practice, 180, 109042. https://doi.org/10.1016/j.diabres.2021.109042
Patel, T. P., Rawal, K., Bagchi, A. K., Akolkar, G., Bernardes, N., Dias, D. da S., Gupta, S., & Singal, P. K. (2016). Insulin resistance: An additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Failure Reviews, 21(1), 11–23. https://doi.org/10.1007/s10741-015-9515-6
Pramono, S., Arifah, F. H., Pribadi, F. H., & Nugroho, A. E. (2018). Hepatoprotective activity of Curcuma xanthorrhiza Roxb. On paracetamol- induced liver damage in rats and correlation with their chemical compounds. Thai Journal of Pharmaceutical Sciences, 42(4), 188–195.
Prasad, R., & Groop, L. (2015). Genetics of Type 2 Diabetes—Pitfalls and Possibilities. Genes, 6(1), 87–123. https://doi.org/10.3390/genes6010087
Sadeghabadi, Z. A., Lotfi, F., Moheb, S. S., Abbasalipourkabir, R., Goodarzi, M. T., & Ziamajidi, N. (2022). Effects of garlic extract on inflammatory cytokines in rats with type 1 and type 2 diabetes. Gene Reports, 26, 101474. https://doi.org/10.1016/j.genrep.2021.101474
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843
Salazar, J., Bermúdez, V., Calvo, M., Olivar, L. C., Luzardo, E., Navarro, C., Mencia, H., Martínez, M., Rivas-Ríos, J., Wilches-Durán, S., Cerda, M., Graterol, M., Graterol, R., Garicano, C., Hernández, J., & Rojas, J. (2018). Optimal cutoff for the evaluation of insulin resistance through triglyceride-glucose index: A cross-sectional study in a Venezuelan population. F1000Research, 6, 1337. https://doi.org/10.12688/f1000research.12170.3
Selvi, N. M. K., Nandhini, S., Sakthivadivel, V., Lokesh, S., Srinivasan, A. R., & Sumathi, S. (2021). Association of Triglyceride–Glucose Index (TyG index) with HbA1c and Insulin Resistance in Type 2 Diabetes Mellitus. Maedica - A Journal of Clinical Medicine, 16(3), 375–381. https://doi.org/10.26574/maedica.2021.16.3.375
Skovsø, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation, 5(4), 349–358. https://doi.org/10.1111/jdi.12235
Subash-Babu, P., Ignacimuthu, S., Agastian, P., & Varghese, B. (2009). Partial regeneration of β-cells in the islets of Langerhans by Nymphayol a sterol isolated from Nymphaea stellata (Willd.) flowers. Bioorganic & Medicinal Chemistry, 17(7), 2864–2870. https://doi.org/10.1016/j.bmc.2009.02.021
Unger, G., Benozzi, S. F., Perruzza, F., & Pennacchiotti, G. L. (2014). Triglycerides and glucose index: A useful indicator of insulin resistance. Endocrinología y Nutrición (English Edition), 61(10), 533–540. https://doi.org/10.1016/j.endoen.2014.11.006
Viggiano, E., Mollica, M. P., Lionetti, L., Cavaliere, G., Trinchese, G., De Filippo, C., Chieffi, S., Gaita, M., Barletta, A., De Luca, B., Crispino, M., & Monda, M. (2016). Effects of an High-Fat Diet Enriched in Lard or in Fish Oil on the Hypothalamic Amp-Activated Protein Kinase and Inflammatory Mediators. Frontiers in Cellular Neuroscience, 10. https://doi.org/10.3389/fncel.2016.00150
Wang, X., Son, M., Meram, C., & Wu, J. (2019). Mechanism and Potential of Egg Consumption and Egg Bioactive Components on Type-2 Diabetes. Nutrients, 11(2), 357. https://doi.org/10.3390/nu11020357
Wickramasinghe, A. S. D., Attanayake, A. P., & Kalansuriya, P. (2022). Biochemical characterization of high fat diet fed and low dose streptozotocin induced diabetic Wistar rat model. Journal of Pharmacological and Toxicological Methods, 113, 107144. https://doi.org/10.1016/j.vascn.2021.107144
Wu, S., Zuo, J., Cheng, Y., Zhang, Y., Zhang, Z., Wu, M., Yang, Y., & Tong, H. (2021). Ethanol extract of Sargarsum fusiforme alleviates HFD/STZ-induced hyperglycemia in association with modulation of gut microbiota and intestinal metabolites in type 2 diabetic mice. Food Research International, 147, 110550. https://doi.org/10.1016/j.foodres.2021.110550
Zhao, J., Zhang, Y., Wei, F., Song, J., Cao, Z., Chen, C., Zhang, K., Feng, S., Wang, Y., & Li, W.-D. (2019). Triglyceride is an independent predictor of type 2 diabetes among middle-aged and older adults: A prospective study with 8-year follow-ups in two cohorts. Journal of Translational Medicine, 17(1), 403. https://doi.org/10.1186/s12967-019-02156-3
Published
2024-01-04
How to Cite
Arifah, F. H., Nugroho, A. E., Rohman, A., & Sujarwo, W. (2024). Characterization of biochemical and histological of fructose-based high-fat diet and low-dose streptozotocin in type 2 diabetes mellitus rat model. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.6303
Section
Research Article

Most read articles by the same author(s)