Manipulation Strategy to Increase Expression Level of Soluble Recombinant Protein Penicillin G Acylase (PGA) in Bacterial Host Escherichia coli: A Review Article

  • Achmad Makin Amin Master Study Program for Biotechnology, Graduate School, Universitas Gadjah Mada
  • Sismindari Master Study Program for Biotechnology, Graduate School, Universitas Gadjah Mada
  • Sunni Sofiah Aniqah Master Study Program for Biotechnology, Graduate School, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Lutfia Nadiatuz Zakiyah
  • Muthi'ah Rasyidah Master Study Program of Pharmaceutical Science,Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Purwanto Department of Pharmaceutical Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
Keywords: PGA, Expression, Soluble Protein, E. coli

Abstract

The strategy of producing PGA on a massive scale with high levels of soluble protein can be through recombinant genetic techniques and expressed in a certain host. E. coli is still a popular bacterial host to produce a recombinant protein which has advantages such as fast growth, low production cost, and high expression rate. Apart from its advantages, E. coli as a production host also has disadvantages including the expression of recombinant proteins often failing to form the proper folding conformation which makes the protein biologically inactive. Many strategies can be developed to overcome these problems, such as the selection of the host strain (E. coli HB101 & JM109), fusion protein to enhance the recovery of soluble protein (MBP & NusA), optimization of fermentation (low-temperature incubation), and optimization of the protein isolation process for the recovery of active PGA (Freeze-thawing method).

Author Biography

Lutfia Nadiatuz Zakiyah

Undergraduate Program of Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

 

References

Ahmad, I., Nawaz, N., Darwesh, N. M., ur Rahman, S., Mustafa, M. Z., Khan, S. B., & Patching, S. G. (2018). Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expression and Purification, 144, 12–18. https://doi.org/10.1016/j.pep.2017.11.005
Ajamani, A., Kumar, R., Bhargava, P., & Vats, S. (2019). Mathematically optimized production, purification and characterization of penicillin G acylase from soil bacterial isolates AA17A and AA17B. Indian Journal of Biotechnology, 18, 260–268.
Andler, R., Heger, F., Andreeßen, C., & Steinbüchel, A. (2019). Enhancing the synthesis of latex clearing protein by different cultivation strategies. Journal of Biotechnology, 297, 32–40. https://doi.org/10.1016/j.jbiotec.2019.03.019
Ashraf, Z., Bais, A., Manir, M. M., & Niazi, U. (2015). Novel penicillin analogues as potential antimicrobial agents; Design, synthesis and docking studies. PLoS ONE, 10(8). https://doi.org/10.1371/journal.pone.0135293
Avinash, V. S., Pundle, A. V., Ramasamy, S., & Suresh, C. G. (2016). Penicillin acylases revisited: Importance beyond their industrial utility. In Critical Reviews in Biotechnology (Vol. 36, Issue 2, pp. 303–316). Taylor and Francis Ltd. https://doi.org/10.3109/07388551.2014.960359
Ayakar, S. R., & Yadav, G. D. (2019). Development of novel support for penicillin acylase and its application in 6-aminopenicillanic acid production. Molecular Catalysis, 476, 1–12. https://doi.org/10.1016/j.mcat.2019.110484
Balchin, D., Hayer-Hartl, M., & Hartl, F. U. (2020). Recent advances in understanding catalysis of protein folding by molecular chaperones. In FEBS Letters (Vol. 594, Issue 17, pp. 2770–2781). Wiley Blackwell. https://doi.org/10.1002/1873-3468.13844
Bhatwa, A., Wang, W., Hassan, Y. I., Abraham, N., Li, X. Z., & Zhou, T. (2021). Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. In Frontiers in Bioengineering and Biotechnology (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2021.630551
Buchholz, K. (2016). A breakthrough in enzyme technology to fight penicillin resistance—industrial application of penicillin amidase. Applied Microbiology and Biotechnology, 100(9), 3825–3839. https://doi.org/10.1007/s00253-016-7399-6
Chatterjee, B. K., Puri, S., Sharma, A., Pastor, A., & Chaudhuri, T. K. (2018). Molecular Chaperones: Structure-Function Relationship and their Role in Protein Folding. In Regulation of Heat Shock Protein Responses, Heat Shock Protein 13 (pp. 181–218). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-74715-6_8
Costa, S., Almeida, A., Castro, A., & Domingues, L. (2014). Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: The novel Fh8 system. In Frontiers in Microbiology (Vol. 5, Issue 63, pp. 1–20). Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2014.00063
de Geyter, J., Portaliou, A. G., Srinivasu, B., Krishnamurthy, S., Economou, A., & Karamanou, S. (2020). Trigger factor is a bona fide secretory pathway chaperone that interacts with SecB and the translocase . EMBO Reports, 21(6), 1–17. https://doi.org/10.15252/embr.201949054
Deuerling, E., Gamerdinger, M., & Kreft, S. G. (2019). Chaperone interactions at the ribosome. Cold Spring Harbor Perspectives in Biology, 11(11). https://doi.org/10.1101/cshperspect.a033977
Falak, S., Sajed, M., & Rashid, N. (2022). Strategies to enhance soluble production of heterologous proteins in Escherichia coli. In Biologia (Vol. 77, Issue 3, pp. 893–905). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11756-021-00994-5
Fang, K., Li, Y., Yin, X., Samad, A., & Jin, T. (2018). High-level prokaryotic expression and purification of death domain superfamily with MBP tag. Clinical Laboratory, 64(4), 467–475. https://doi.org/10.7754/Clin.Lab.2017.170922
Fierro, F., Vaca, I., Castillo, N. I., García-Rico, R. O., & Chávez, R. (2022). Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms, 10(3), 573. https://doi.org/10.3390/microorganisms10030573
Gaciarz, A., Khatri, N. K., Velez-Suberbie, M. L., Saaranen, M. J., Uchida, Y., Keshavarz-Moore, E., & Ruddock, L. W. (2017). Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media. Microbial Cell Factories, 16(108), 1–12. https://doi.org/10.1186/s12934-017-0721-x
Gonzalo, G. de, & Lavandera, I. (2021). Biocatalysis for practitioners : techniques, reactions and applications. WILEY-VCH.
Greenfield, E. A., DeCaprio, J., & Brahmandam, M. (2020). Preparing GST-, His-, or MBP-fusion proteins from bacteria. Cold Spring Harbor Protocols, 2020(9), 394–398. https://doi.org/10.1101/pdb.prot100024
Harkness, R. W., Toyama, Y., Ripstein, Z. A., Zhao, H., Sever, A. I. M., Luan, Q., Brady, J. P., Clark, P. L., Schuck, P., & Kay, L. E. (2021). Competing stress-dependent oligomerization pathways regulate self-assembly of the periplasmic protease-chaperone DegP. PNAS, 118(32), 1–11. https://doi.org/10.1073/pnas.2109732118/-/DCSupplemental
Hausjell, J., Weissensteiner, J., Molitor, C., Halbwirth, H., & Spadiut, O. (2018). E. coli HMS174(DE3) is a sustainable alternative to BL21(DE3). Microbial Cell Factories, 17(1). https://doi.org/10.1186/s12934-018-1016-6
Hemmati, S., & Ranjbari, J. (2019). Soluble Form Production of Recombinant Human Insulin-Like Growth Factor-1 by NusA Fusion Partner in E. coli. Trends in Peptide and Protein Scienses, 4(8), 1–5. https://doi.org/10.22037/tpps.v4i0.26948
Hoffmann, A., Bukau, B., & Kramer, G. (2010). Structure and function of the molecular chaperone Trigger Factor. In Biochimica et Biophysica Acta - Molecular Cell Research (Vol. 1803, Issue 6, pp. 650–661). https://doi.org/10.1016/j.bbamcr.2010.01.017
Huleani, S., Roberts, M. R., Beales, L., & Papaioannou, E. H. (2022). Escherichia coli as an antibody expression host for the production of diagnostic proteins: significance and expression. In Critical Reviews in Biotechnology (Vol. 42, Issue 5, pp. 756–773). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2021.1967871
Illanes, A., & Valencia, P. (2016). Industrial and Therapeutic Enzymes: Penicillin Acylase. In Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products (pp. 267–305). Elsevier Inc. https://doi.org/10.1016/B978-0-444-63662-1.00013-0
Kang, J. Y., Mishanina, T. v., Landick, R., & Darst, S. A. (2019). Mechanisms of Transcriptional Pausing in Bacteria. In Journal of Molecular Biology (Vol. 431, Issue 20, pp. 4007–4029). Academic Press. https://doi.org/10.1016/j.jmb.2019.07.017
Kaur, J., Kumar, A., & Kaur, J. (2018). Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. In International Journal of Biological Macromolecules (Vol. 106, pp. 803–822). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2017.08.080
Ko, H., Kang, M., Kim, M. J., Yi, J., Kang, J., Bae, J. H., Sohn, J. H., & Sung, B. H. (2021). A novel protein fusion partner, carbohydrate-binding module family 66, to enhance heterologous protein expression in Escherichia coli. Microbial Cell Factories, 20(1). https://doi.org/10.1186/s12934-021-01725-w
Kumar, S., Deep, C. S., Yadav, A., Shouche, Y., & Goel, R. (2020). Psychrophilic Pseudomonas Helmanticensis Proteome under Simulated Cold Stress. Cell Stress and Chaperones, 25, 1025–1032. https://doi.org/10.1007/s12192-020-01139-4/Published
Lebendiker, M., & Danieli, T. (2017). Purification of proteins fused to maltose-binding protein. In Methods in Molecular Biology (Vol. 1485, pp. 257–273). Humana Press Inc. https://doi.org/10.1007/978-1-4939-6412-3_13
Maksum, I. P., Utami, D. F., Nurhakim, E. A., Yosua, Sriwidodo, Yusuf, M., Fadhillah, M., & Haryanto, R. A. (2022). Overexpression of soluble recombinant Thermus thermophilus (Tth) DNA polymerase in Escherichia coli BL21(DE3) using an MBP fusion tag as a solubility enhancer. Journal of Applied Pharmaceutical Science, 12(09), 017–024. https://doi.org/10.7324/JAPS.2022.120903
Manan, M. A., & Webb, C. (2017). Design Aspects of Solid State Fermentation as Applied to Microbial Bioprocessing. Journal of Applied Biotechnology & Bioengineering, 4(1), 1–25. https://doi.org/10.15406/jabb.2017.04.00094
Marešová, H., Plačková, M., Grulich, M., & Kyslík, P. (2014). Current state and perspectives of penicillin G acylase-based biocatalyses. In Applied Microbiology and Biotechnology (Vol. 98, Issue 7, pp. 2867–2879). Springer Verlag. https://doi.org/10.1007/s00253-013-5492-7
Mayer, J., Pippel, J., Günther, G., Müller, C., Lauermann, A., Knuuti, T., Blankenfeldt, W., Jahn, D., & Biedendieck, R. (2019). Crystal structures and protein engineering of three different penicillin G acylases from Gram-positive bacteria with different thermostability. Applied Microbiology and Biotechnology, 103(18), 7537–7552. https://doi.org/10.1007/s00253-019-09977-8
McDonald, M. A., Bommarius, A. S., Rousseau, R. W., & Grover, M. A. (2019). Continuous reactive crystallization of Β-lactam antibiotics catalyzed by penicillin G acylase. Part I: Model development. Computers and Chemical Engineering, 123, 331–343. https://doi.org/10.1016/j.compchemeng.2018.12.029
Narayanan, N., Xu, Y., & Chou, C. P. (2006). High-level gene expression for recombinant penicillin acylase production using the araB promoter system in Escherichia coli. Biotechnology Progress, 22(6), 1518–1523. https://doi.org/10.1021/bp060135u
Nemergut, M., Škrabana, R., Berta, M., Plückthun, A., & Sedlák, E. (2021). Purification of MBP fusion proteins using engineered DARPin affinity matrix. International Journal of Biological Macromolecules, 187, 105–112. https://doi.org/10.1016/j.ijbiomac.2021.07.117
Nguyen, M. T., Heo, Y., Do, B. H., Baek, S., Kim, C. J., Jang, Y. J., Lee, W., & Choe, H. (2020). Bacterial overexpression and purification of soluble recombinant human serum albumin using maltose-binding protein and protein disulphide isomerase. Protein Expression and Purification, 167, 1–9. https://doi.org/10.1016/j.pep.2019.105530
O’Neil, P. T., Machen, A. J., Deatherage, B. C., Trecazzi, C., Tischer, A., Machha, V. R., Auton, M. T., Baldwin, M. R., White, T. A., & Fisher, M. T. (2018). The Chaperonin GroEL: A Versatile Tool for Applied Biotechnology Platforms. Frontiers in Molecular Biosciences, 5(46), 1–18. https://doi.org/10.3389/fmolb.2018.00046
Pan, X., Li, A., Peng, Z., Ji, X., Chu, J., & He, B. (2020). Efficient synthesis of β-lactam antibiotics with in situ product removal by a newly isolated penicillin G acylase. Bioorganic Chemistry, 99. https://doi.org/10.1016/j.bioorg.2020.103765
Pan, X., Yu, Q., Chu, J., Jiang, T., & He, B. (2018). Fitting replacement of signal peptide for highly efficient expression of three penicillin G acylases in E. coli. Applied Microbiology and Biotechnology, 102(17), 7455–7464. https://doi.org/10.1007/s00253-018-9163-6
Paraskevopoulou, V., & Falcone, F. H. (2018). Polyionic tags as enhancers of protein solubility in recombinant protein expression. Microorganisms, 6(47), 1–17. https://doi.org/10.3390/microorganisms6020047
Petrus, M. L. C., Kiefer, L. A., Puri, P., Heemskerk, E., Seaman, M. S., Barouch, D. H., Arias, S., van Wezel, G. P., & Havenga, M. (2019). A microbial expression system for high-level production of scFv HIV-neutralizing antibody fragments in Escherichia coli. Applied Microbiology and Biotechnology, 103(21–22), 8875–8888. https://doi.org/10.1007/s00253-019-10145-1
Pikal-Cleland, K. A., Rodríguez-Hornedo, N., Amidon, G. L., & Carpenter, J. F. (2000). Protein denaturation during freezing and thawing in phosphate buffer systems: Monomeric and tetrameric β-galactosidase. Archives of Biochemistry and Biophysics, 384(2), 398–406. https://doi.org/10.1006/abbi.2000.2088
Pontrelli, S., Chiu, T. Y., Lan, E. I., Chen, F. Y. H., Chang, P., & Liao, J. C. (2018). Escherichia coli as a host for metabolic engineering. Metabolic Engineering, 50, 16–46. https://doi.org/10.1016/j.ymben.2018.04.008
Qi, X., Sun, Y., & Xiong, S. (2015). A single freeze-thawing cycle for highly efficient solubilization of inclusion body proteins and its refolding into bioactive form. Microbial Cell Factories, 14(1), 1–12. https://doi.org/10.1186/s12934-015-0208-6
Rajendran, K., Mahadevan, S., Rajendhran, J., Paramasamy, G., & Mandal, A. B. (2015). Investigations to Enhance Production of Penicillin G Acylase from Recombinant Bacillus badius pac Expressed in Escherichia coli DH5α. Chemical Engineering Communications, 202(4), 449–456. https://doi.org/10.1080/00986445.2013.845750
Sambyal, K., & Singh, R. V. (2021). Exploitation of E. coli for the production of penicillin G amidase: a tool for the synthesis of semisynthetic β-lactam antibiotics. In Journal of Genetic Engineering and Biotechnology (Vol. 19, Issue 156, pp. 1–11). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s43141-021-00263-7
Sawant, A. M., Sunder, A. V., Vamkudoth, K. R., Ramasamy, S., & Pundle, A. (2020). Process Development for 6-Aminopenicillanic Acid Production Using Lentikats-Encapsulated Escherichia coli Cells Expressing Penicillin v Acylase. ACS Omega, 5(45), 28972–28976. https://doi.org/10.1021/acsomega.0c02813
Singh, A., Upadhyay, V., Singh, A., & Panda, A. K. (2020). Structure-Function Relationship of Inclusion Bodies of a Multimeric Protein. Frontiers in Microbiology, 11(876), 1–10. https://doi.org/10.3389/fmicb.2020.00876
Singh, A., Upadhyay, V., Upadhyay, A. K., Singh, S. M., & Panda, A. K. (2015). Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. In Microbial Cell Factories (Vol. 14, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12934-015-0222-8
Singh, S. M., & Panda, A. K. (2005). Solubihzation and refolding of bacterial inclusion body proteins. Journal of Bioscience and Bioengineering, 99(4), 303–310. https://doi.org/10.1263/jbb.99.303
Slouka, C., Kopp, J., Spadiut, O., & Herwig, C. (2019). Perspectives of inclusion bodies for bio-based products: curse or blessing? In Applied Microbiology and Biotechnology (Vol. 103, Issue 3, pp. 1143–1153). Springer Verlag. https://doi.org/10.1007/s00253-018-9569-1
Srirangan, K., Orr, V., Akawi, L., Westbrook, A., Moo-Young, M., & Chou, C. P. (2013). Biotechnological advances on Penicillin G acylase: Pharmaceutical implications, unique expression mechanism and production strategies. In Biotechnology Advances (Vol. 31, Issue 8, pp. 1319–1332). https://doi.org/10.1016/j.biotechadv.2013.05.006
Subroto, T., Maksum, I. P., Yusuf, M., Kusuma, S. A. F., & Opratami, W. (2022). Purity of maltose-binding protein - Recombinant streptavidin expressed in Escherichia coli BL21 (pD861-MBP: 327892). Journal of Advanced Pharmaceutical Technology and Research, 13(2), 117–122. https://doi.org/10.4103/japtr.japtr_371_21
Šulskis, D., Thoma, J., & Burmann, B. M. (2021). Structural basis of DegP protease temperature-dependent activation. Sci. Adv, 7, 1–17. https://doi.org/10.1126/sciadv.abj1816
Thirumalai, D., Lorimer, G. H., & Hyeon, C. (2020). Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. In Protein Science (Vol. 29, Issue 2, pp. 360–377). Blackwell Publishing Ltd. https://doi.org/10.1002/pro.3795
Tian, Z., Feng, L., Li, L., Tian, X., Cui, J., Zhang, H., Wang, C., Huang, H., Zhang, B., & Ma, X. (2020). Visualized characterization of bacterial penicillin G acylase for the hydrolysis of β-lactams using an activatable NIR fluorescent probe. Sensors and Actuators, B: Chemical, 310, 1–7. https://doi.org/10.1016/j.snb.2020.127872
Torres-Bacete, J., Hormigo, D., Torres-Gúzman, R., Arroyo, M., Castillón, M. P., García, J. L., Acebal, C., & de la Mata, I. (2015). Overexpression of penicillin V acylase from Streptomyces lavendulae and elucidation of its catalytic residues. Applied and Environmental Microbiology, 81(4), 1225–1233. https://doi.org/10.1128/AEM.02352-14
Tripathi, N. K., & Shrivastava, A. (2019). Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Frontiers in Bioengineering and Biotechnology, 7(420), 1–35. https://doi.org/10.3389/fbioe.2019.00420
Velasco-Bucheli, R., Hormigo, D., Fernández-Lucas, J., Torres-Ayuso, P., Alfaro-Ureña, Y., Saborido, A. I., Serrano-Aguirre, L., García, J. L., Ramón, F., Acebal, C., Santos, A., Arroyo, M., & de la Mata, I. (2020). Penicillin acylase from streptomyces lavendulae and aculeacin a acylase from actinoplanes utahensis: Two versatile enzymes as useful tools for quorum quenching processes. Catalysts, 10(730), 1–19. https://doi.org/10.3390/catal10070730
Vélez, A. M., da Silva, A. J., Horta, A. C. L., Sargo, C. R., Campani, G., Silva, G. G., Giordano, R. de L. C., & Zangirolami, T. C. (2014). High-throughput strategies for penicillin G acylase production in rE. coli fed-batch cultivations. BMC Biotechnology, 14(6), 1–13. https://doi.org/10.1186/1472-6750-14-6
Wruck, F., Avellaneda, M. J., Koers, E. J., Minde, D. P., Mayer, M. P., Kramer, G., Mashaghi, A., & Tans, S. J. (2018). Protein Folding Mediated by Trigger Factor and Hsp70: New Insights from Single-Molecule Approaches. In Journal of Molecular Biology (Vol. 430, Issue 4, pp. 438–449). Academic Press. https://doi.org/10.1016/j.jmb.2017.09.004
Wu, K., Minshull, T. C., Radford, S. E., Calabrese, A. N., & Bardwell, J. C. A. (2022). Trigger factor both holds and folds its client proteins. Nature Communications, 13(4126), 1–15. https://doi.org/10.1038/s41467-022-31767-6
Xu, Y., Weng, C. L., Narayanan, N., Hsieh, M. Y., Anderson, W. A., Scharer, J. M., Moo-Young, M., & Chou, C. P. (2005). Chaperone-mediated folding and maturation of the penicillin acylase precursor in the cytoplasm of Escherichia coli. Applied and Environmental Microbiology, 71(10), 6247–6253. https://doi.org/10.1128/AEM.71.10.6247-6253.2005
Zhou, Y., Lu, Z., Wang, X., Selvaraj, J. N., & Zhang, G. (2018). Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. In Applied Microbiology and Biotechnology (Vol. 102, Issue 4, pp. 1545–1556). Springer Verlag. https://doi.org/10.1007/s00253-017-8700-z
Zhu, C., Guo, X., Dumas, P., Takacs, M., Abdelkareem, M., vanden Broeck, A., Saint-André, C., Papai, G., Crucifix, C., Ortiz, J., & Weixlbaumer, A. (2022). Transcription factors modulate RNA polymerase conformational equilibrium. Nature Communications, 13(11546), 1–12. https://doi.org/10.1038/s41467-022-29148-0
Published
2024-03-25
How to Cite
Amin, A. M., Sismindari, Aniqah, S. S., Zakiyah, L. N., Rasyidah, M., & Purwanto. (2024). Manipulation Strategy to Increase Expression Level of Soluble Recombinant Protein Penicillin G Acylase (PGA) in Bacterial Host Escherichia coli: A Review Article. Indonesian Journal of Pharmacy, 35(1), 20-36. https://doi.org/10.22146/ijp.5892
Section
Review Article