Alginate-ZnO-Poly(ethylene glycol) Dimethacrylate (PEGDMA) via Interpenetrating Polymer Network as a Functional Material for Wound Dressing

  • Ane Nurjanah Department of Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia.
  • Muhammad Bachri Amran Department of Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia.
  • Rusnadi Rusnadi Department of Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung, Indonesia.
Keywords: wound dressing material, alginate, ZnO nanoparticle, PEGDMA, Interpenetrating Polymer Network (IPN)

Abstract

Alginate is a biopolymer that has been widely applied as a wound dressing material. To increase the mechanical and antibacterial properties of a wound dressing material, nanoparticles and synthetic polymers are used to modify alginate. One of the materials synthesized into nanoparticles is ZnO, which has potential applications in the medical field because of its good antibacterial properties. On the other hand, PEGDMA has not been widely used in the medical field, opening opportunities to develop research, especially regarding wound dressing materials. However, there has never been a detailed report on the modification of alginate using ZnO and PEGDMA. In this paper, alginate was modified using ZnO and poly(ethylene glycol) dimethacrylate (PEGDMA; alginate–ZnO–PEGDMA, AZP), which was synthesized using the Interpenetrating Polymer Network (IPN) method. AZP can increase a wound dressing material’s mechanical properties by 78% and the antibacterial properties by 94%, which indicates that alginate modification with ZnO and PEGDMA produces high-performance wound dressing materials.

References

Al-Sabahi, J., Bora, T., Claereboudt, M., Al-Abri, M., & Dutta, J. (2018). Visible light photocatalytic degradation of HPAM polymer in oil produced water using supported zinc oxide nanorods. Chemical Engineering Journal, 351, 56–64. https://doi.org/10.1016/J.CEJ.2018.06.071

Branco da Cunha, C., Klumpers, D. D., Li, W. A., Koshy, S. T., Weaver, J. C., Chaudhuri, O., … Mooney, D. J. (2014). Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology. Biomaterials, 35(32), 8927–8936. https://doi.org/10.1016/j.biomaterials.2014.06.047

Chiang, C. Y., & Chu, C. C. (2015). Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohydrate Polymers, 119, 18–25. https://doi.org/10.1016/J.CARBPOL.2014.11.043

Foliatini, Yulizar, Y., & Hafizah, M. A. E. (2015). The synthesis of alginate-capped silver nanoparticles under microwave irradiation. Journal of Mathematical and Fundamental Sciences, 47(1), 31–50. https://doi.org/10.5614/J.MATH.FUND.SCI.2015.47.1.3

Guo, T. H., Liu, Y., Zhang, Y. C., & Zhang, M. (2011). Green hydrothermal synthesis and optical absorption properties of ZnO2 nanocrystals and ZnO nanorods. Materials Letters, 65(4), 639–641. https://doi.org/10.1016/J.MATLET.2010.11.032

Iwamura, T., Goto, S.-I., Sakaguchi, M., & Chujo, Y. (2016). Synthesis of Submicrometer Zinc Oxide Particles and Zinc Oxide Nanowires Using Microwave Irradiation The Chemical Society of Japan. Chem Lett , 45(5), 508–510. https://doi.org/10.1246/cl.160081

Jafarirad, S., Mehrabi, M., Divband, B., & Kosari-Nasab, M. (2016). Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Materials Science & Engineering. C, Materials for Biological Applications, 59, 296–302. https://doi.org/10.1016/J.MSEC.2015.09.089

Khalid, A., Khan, R., Ul-Islam, M., Khan, T., & Wahid, F. (2017). Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydrate Polymers, 164, 214–221. https://doi.org/10.1016/J.CARBPOL.2017.01.061

Lam, S. M., Quek, J. A., & Sin, J. C. (2017). Surfactant-free synthesis of ZnO micro/nanoflowers with efficient photocatalytic antibacterial performance. Materials Letters, 195, 34–36. https://doi.org/10.1016/J.MATLET.2017.02.084

Lam, S. M., Sin, J. C., Zuhairi Abdullah, A., & Rahman Mohamed, A. (2013). Green hydrothermal synthesis of ZnO nanotubes for photocatalytic degradation of methylparaben. Materials Letters, 93, 423–426. https://doi.org/10.1016/J.MATLET.2012.12.008

Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in Polymer Science, 37(1), 106–126. https://doi.org/10.1016/J.PROGPOLYMSCI.2011.06.003

Mahdavi, M., Namvar, F., Ahmad, M. Bin, & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe₃O₄) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules (Basel, Switzerland), 18(5), 5954–5964. https://doi.org/10.3390/MOLECULES18055954

Marinho, J. Z., Romeiro, F. C., Lemos, S. C. S., Motta, F. V., Riccardi, C. S., Li, M. S., … Lima, R. C. (2012). Urea-based synthesis of zinc oxide nanostructures at low temperature. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/427172

Mowade, T. K., Dange, S. P., Thakre, M. B., & Kamble, V. D. (2012). Effect of fiber reinforcement on impact strength of heat polymerized polymethyl methacrylate denture base resin: in vitro study and SEM analysis. The Journal of Advanced Prosthodontics, 4(1), 30–36. https://doi.org/10.4047/JAP.2012.4.1.30

Sehmi, S. K., Noimark, S., Bear, J. C., Peveler, W. J., Bovis, M., Allan, E., … Parkin, I. P. (2015). Lethal photosensitisation of Staphylococcus aureus and Escherichia coli using crystal violet and zinc oxide-encapsulated polyurethane. Journal of Materials Chemistry B, 3(31), 6490–6500. https://doi.org/10.1039/C5TB00971E

Sehmi, S. K., Noimark, S., Pike, S. D., Bear, J. C., Peveler, W. J., Williams, C. K., … MacRobert, A. J. (2016). Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants. ACS Omega, 1(3), 334–343. https://doi.org/10.1021/ACSOMEGA.6B00017

Shalumon, K. T., Anulekha, K. H., Nair, S. V., Nair, S. V., Chennazhi, K. P., & Jayakumar, R. (2011). Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. International Journal of Biological Macromolecules, 49(3), 247–254. https://doi.org/10.1016/J.IJBIOMAC.2011.04.005

Vasquez, R. D., Apostol, J. G., de Leon, J. D., Mariano, J. D., Mirhan, C. M. C., Pangan, S. S., … Zamora, E. T. (2016). Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassum siliquosum J.G. Agardh: Assessment of toxicity and hepatoprotective activity. OpenNano, 1, 16–24. https://doi.org/10.1016/J.ONANO.2016.03.001

Wang, F., Lu, X., & Li, X. Y. (2016). Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery. Journal of Hazardous Materials, 308, 75–83. https://doi.org/10.1016/J.JHAZMAT.2016.01.021

Wang, J., Hu, H., Yang, Z., Wei, J., & Li, J. (2016). IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties. Materials Science & Engineering. C, Materials for Biological Applications, 61, 376–386. https://doi.org/10.1016/J.MSEC.2015.12.023
Published
2023-09-04
How to Cite
Nurjanah, A., Amran, M. B., & Rusnadi, R. (2023). Alginate-ZnO-Poly(ethylene glycol) Dimethacrylate (PEGDMA) via Interpenetrating Polymer Network as a Functional Material for Wound Dressing . Indonesian Journal of Pharmacy, 34(3), 471–481. https://doi.org/10.22146/ijp.5388
Section
Research Article