Tyrosinase Inhibitory and Antioxidant Activity of Paederia foetida L.

  • Mukhriani Mukhriani Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
  • Yusnita Rifai Laboratory of Pharmaceutical Biology, Faculty of Medicine and Health Sciences, Alauddin, University, Gowa, Indonesia
  • Yulia Yusriani Djabir Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
  • Muammar Fawwaz Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Muslim Indonesia, Makassar 90231, Indonesia.
  • Gemini Alam Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; Head of Drug Discovery and Development Centre, Hasanuddin University, Makassar 90245, Indonesia.
Keywords: Antioxidant capacity, tyrosinase, DPPH, FRAP, CUPRAC

Abstract

Paederia foetida L. is a tropical Asian plant containing bioactive compounds and often used as functional foods. The aim of this study was to determine the antioxidant capacity and inhibitory activity of P. foetida leaves extract on tyrosinase activity. In addition, the total phenolic content (TPC) and total flavonoid content (TFC) were determined. TPC and TFC was evaluated by the Folin-Ciocalteu and the aluminum chloride (AlCl3) colorimetric method, respectively. The antioxidant capacity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) method. The antioxidant capacity was expressed as trolox equivalent antioxidant capacity (TEAC) dan ascorbic acid equivalent capacity (AAEC). The tyrosinase inhibitory activity was conducted by enzyme-linked immunosorbent assay (ELISA) using L-tyrosine as a substrate and measured at 490 nm by ELISA reader. TPC in the crude extract, fraction A, and fraction B was 173.18 ± 3.99, 553.95 ± 5.70 and 405.37 ± 33.90, respectively. TFC in the crude extract, fraction A, and fraction B was 12.79 ± 0,25, 143.16 ± 9.27, 143.50 ± 6.90, respectively. The best antioxidant capacity of the extract was shown in the DPPH method (15.71 ± 1.6 mg TEAC/g and 100.77 ± 8.5 mg AAEC/g). Meanwhile, fraction B showed the best antioxidant capacity by the FRAP (11.48 ± 1.5 TEAC/g and 8.39 ± 1.2 mg AAEC/g ) and CUPRAC (116.34 ± 1.9 mg TEAC/g and  66.11 ± 1.3 mg AAEC/g) methods. Tyrosinase inhibitory activity exhibited that the IC50 of fraction A and B was 13.67 μg/mL and 13.37 μg/mL, respectively.

References

Afroz, S., Alamgir, M., Khan, M. T., Jabbar, S., Nahar, N., & Choudhuri, M. S. (2006). Antidiarrhoeal activity of the ethanol extract of Paederia foetida Linn. (Rubiaceae). J Ethnopharmacol, 105(1-2), 125-130. doi:10.1016/j.jep.2005.10.004
Alam, N., Yoon, K. N., Lee, J. S., Cho, H. J., & Lee, T. S. (2012). Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae. Saudi J Biol Sci, 19(1), 111-118. doi:10.1016/j.sjbs.2011.11.004
Arwansyah, A., Arif, A. R., Syahputra, G., Sukarti, S., & Kurniawan, I. (2021). Theoretical studies of Thiazolyl-Pyrazoline derivatives as promising drugs against malaria by QSAR modelling combined with molecular docking and molecular dynamics simulation. Molecular Simulation, 47(12), 988-1001. doi:10.1080/08927022.2021.1935926
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178-182.
Chen, W. C., Tseng, T. S., Hsiao, N. W., Lin, Y. L., Wen, Z. H., Tsai, C. C., . . . Tsai, K. C. (2015). Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep, 5, 7995. doi:10.1038/srep07995
Chung, Y. C., Lee, J. N., Kim, B. S., & Hyun, C.-G. (2021). Anti-Melanogenic Effects of Paederia foetida L. Extract via MAPK Signaling-Mediated MITF Downregulation. Cosmetics, 8(1), 22. Retrieved from https://www.mdpi.com/2079-9284/8/1/22
Cui, H. X., Duan, F. F., Jia, S. S., Cheng, F. R., & Yuan, K. (2018). Antioxidant and Tyrosinase Inhibitory Activities of Seed Oils from Torreya grandis Fort. ex Lindl. Biomed Res Int, 2018, 5314320. doi:10.1155/2018/5314320
Delano, D. L. (Producer). (2020). The PyMOL Molecular Graphics System, Version 2.3. (2020).
Fawwaz, M., Baits, M., Saleh, A., Irsyaq, M. R., & Pratiwi, R. E. (2018). Isolation of glucosamine HCl from Penaeus monodon. International Food Research Journal, 25(5), 2173-2176.
Fawwaz, M., Pratama, M., Hasrawati, A., Widiastuti, H., & Abidin, Z. (2021). Total Carotenoids, Antioxidant and Anticancer Effect of Penaeus monodon Shells Extract. Biointerface Research in Applied Chemistry, 11(4), 11293 - 11302. doi:https://doi.org/10.33263/BRIAC114.1129311302
Fawwaz, M., Vemilia, P., Mutmainnah, I., & Baits, M. (2019). Scylla serrata Forskal as natural source of glucosamine hydrochloride. Journal of Research in Pharmacy, 23(2), 259-266.
Holmes, E. (1892). Malay materia medica. Bull. Pharm, 6, 108-117.
Kumar, V., Al-Abbasi, F. A., Ahmed, D., Verma, A., Mujeeb, M., & Anwar, F. (2015). Paederia foetida Linn. inhibits adjuvant induced arthritis by suppression of PGE(2) and COX-2 expression via nuclear factor-κB. Food Funct, 6(5), 1652-1666. doi:10.1039/c5fo00178a
Lin, Y.-S., Chen, S.-H., Huang, W.-J., Chen, C.-H., Chien, M.-Y., Lin, S.-Y., & Hou, W.-C. (2012). Effects of nicotinic acid derivatives on tyrosinase inhibitory and antioxidant activities. Food Chemistry, 132(4), 2074-2080. doi:https://doi.org/10.1016/j.foodchem.2011.12.052
Masyita, A., Salim, E., Asri, R. M., Nainu, F., Hori, A., Yulianty, R., . . . Kuraishi, T. (2021). Molecular modeling and phenoloxidase inhibitory activity of arbutin and arbutin undecylenic acid ester. Biochemical and Biophysical Research Communications, 547, 75-81. doi:https://doi.org/10.1016/j.bbrc.2021.02.006
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785-2791. doi:https://doi.org/10.1002/jcc.21256
Nadri, M. H., Salim, Y., Basar, N., Yahya, A., & Zulkifli, R. M. (2014). Antioxidant activities and tyrosinase inhibition effects of Phaleria macrocarpa extracts. Afr J Tradit Complement Altern Med, 11(3), 107-111. doi:10.4314/ajtcam.v11i3.16
Nayaka, N. M. D. M. W., Fidrianny, I., Sukrasno, Hartati, R., & Singgih, M. (2020). Antioxidant and antibacterial activities of multiflora honey extracts from the Indonesian Apis cerana bee. Journal of Taibah University Medical Sciences, 15(3), 211-217. doi:https://doi.org/10.1016/j.jtumed.2020.04.005
Osman, H., Rahim, A. A., Isa, N. M., & Bakhir, N. M. (2009). Antioxidant Activity and Phenolic Content of Paederia foetida and Syzygium aqueum. Molecules, 14(3). doi:10.3390/molecules14030970
Pradhan, N., Parbin, S., Kausar, C., Kar, S., Mawatwal, S., Das, L., . . . Patra, S. K. (2019). Paederia foetida induces anticancer activity by modulating chromatin modification enzymes and altering pro-inflammatory cytokine gene expression in human prostate cancer cells. Food Chem Toxicol, 130, 161-173. doi:10.1016/j.fct.2019.05.016
Ramsden, C. A., & Riley, P. A. (2014). Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg Med Chem, 22(8), 2388-2395. doi:10.1016/j.bmc.2014.02.048
Rifai, Y., Mukhriani., Djabir, Y. Y., & Alam, G. (2020). Chemometric Analysis of Arbutin Derivatives from Paederia foetida and Vitis vinifera with Fourier Transform Infrared (FTIR). Pharmacognosy Journal, 12(3), 436-441.
Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res, 43(W1), W443-447. doi:10.1093/nar/gkv315
Sarkar, R., Arora, P., & Garg, K. V. (2013). Cosmeceuticals for Hyperpigmentation: What is Available? J Cutan Aesthet Surg, 6(1), 4-11. doi:10.4103/0974-2077.110089
Seelinger, M., Popescu, R., Seephonkai, P., Singhuber, J., Giessrigl, B., Unger, C., . . . Krupitza, G. (2012). Fractionation of an Extract of Pluchea odorata Separates a Property Indicative for the Induction of Cell Plasticity from One That Inhibits a Neoplastic Phenotype. Evidence-Based Complementary and Alternative Medicine, 2012, 701927. doi:10.1155/2012/701927
Shaswat, O., Adarsha, R., Alokesh, R., & Sudipta, R. (2018). Extraction of Total Phenolics, Flavonoids and Tannins from Paederia foetida L. Leaves and their Relation with Antioxidant Activity. Pharmacognosy Journal, 10(3). Retrieved from http://fulltxt.org/article/521
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. doi:https://doi.org/10.1002/jcc.21334
Wang, L., Jiang, Y., Han, T., Zheng, C., & Qin, L. (2014). A phytochemical, pharmacological and clinical profile of Paederia foetida and P. scandens. Nat Prod Commun, 9(6), 879-886.
Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of enzyme inhibition and medicinal chemistry, 34(1), 279-309. doi:10.1080/14756366.2018.1545767
Published
2022-12-21
How to Cite
Mukhriani, M., Rifai, Y., Djabir, Y. Y., Fawwaz, M., & Alam, G. (2022). Tyrosinase Inhibitory and Antioxidant Activity of Paederia foetida L. Indonesian Journal of Pharmacy, 34(1), 103-111. https://doi.org/10.22146/ijp.4486
Section
Research Article