Network Pharmacological Analysis Identifies the Curcumin Analog CCA-1.1 Targeting Mitosis Regulatory Process in HER2-Positive Breast Cancer

  • Dhania Novitasari 1. Doctoral Student of Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia. 2. Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Riris Istighfari Jenie 2. Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia. 3. Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
  • Jun-ya Kato 4. Laboratory of Tumor Cell Biology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
  • Edy Meiyanto Professor of Pharmaceutical chemistry, Faculty of Pharmacy. Universitas Gadjah Mada
Keywords: CCA-1.1, Bioinformatics, Mitosis, HER2-amplified breast cancer

Abstract

Recent studies present that the CCA-1.1 (a curcumin derivative) impedes the proliferation of breast cancer cells (luminal, HER2-overexpressed, and TNBC cells). Currently, we analyze the possible target of action of CCA-1.1, particularly in breast cancer cells with HER2 amplification using bioinformatics analysis. The differentially expressed genes (DEGs) of HER2-positive breast cancer were retrieved from TCGA-BRCA data (via UALCAN). We used three web-based tools (Swiss Target Prediction, BindingDB, and TargetNet) to predict the potential target of CCA-1.1 using the SMILE-similarity feature. The functional annotation and network enrichment were processed in WebGestalt. The alteration of selected genes was observed in CBioPortal. The protein-protein interaction (PPI) network was constructed in STRING, then ranked based on the degree score using Cytohubba feature in Cytoscape. The survival analysis from the hub-gene was collected in GEPIA2 with selection only for HER2-positive breast cancer cases. The correlation between the hub genes and tumor-infiltrating immune markers was determined using TIMER web tools. The pathway network analysis highlighted the cell cycle regulation in mitosis as affected signaling amid the putative CCA-1.1 targets. We denoted eight potential genes that could be responsible for inhibiting mitosis regulation upon CCA-1.1 treatment, including AURKA, AURKB, PLK1, TPX2, KIF11, MELK, CDK1, and CHEK1. Several of the potential markers (AURKB, AURKA, CDK1, and CHEK1) revealed to be correlated with the immune cells’ infiltration markers. CCA-1.1 might regulate mitosis to induce cell cycle arrest and lead to cell death. The predicted targets of CCA-1.11 gave insight into the potency of CCA-1.1 to be with immunotherapy. Further validation of the data presented in the study is essentially needed to develop CCA-1.1 for breast cancer.

References

Carmena, M., Wheelock, M., Funabiki, H., & Earnshaw, W. C. (2012). The chromosomal passenger complex (CPC): From easy rider to the godfather of mitosis. Nature Reviews. Molecular Cell Biology, 13(12), 789–803. https://doi.org/10.1038/nrm3474
Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B. V. S. K., & Varambally, S. (2017). UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia (New York, N.Y.), 19(8), 649–658. https://doi.org/10.1016/j.neo.2017.05.002
Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., & Lin, C.-Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11
Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
Davezac, N., Baldin, V., Blot, J., Ducommun, B., & Tassan, J.-P. (2002). Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: A potential role for pEg3 in cell cycle regulation. Oncogene, 21(50), 7630–7641. https://doi.org/10.1038/sj.onc.1205870
Denkert, C., von Minckwitz, G., Darb-Esfahani, S., Lederer, B., Heppner, B. I., Weber, K. E., Budczies, J., Huober, J., Klauschen, F., Furlanetto, J., Schmitt, W. D., Blohmer, J.-U., Karn, T., Pfitzner, B. M., Kümmel, S., Engels, K., Schneeweiss, A., Hartmann, A., Noske, A., … Loibl, S. (2018). Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. The Lancet Oncology, 19(1), 40–50. https://doi.org/10.1016/S1470-2045(17)30904-X
Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6(269), pl1. https://doi.org/10.1126/scisignal.2004088
Gerashchenko, B. I., Salmina, K., Eglitis, J., Huna, A., Grjunberga, V., & Erenpreisa, J. (2016). Disentangling the aneuploidy and senescence paradoxes: A study of triploid breast cancers non-responsive to neoadjuvant therapy. Histochemistry and Cell Biology, 145(4), 497–508. https://doi.org/10.1007/s00418-016-1415-x
Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., & Chong, J. (2016). BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Research, 44(Database issue), D1045–D1053. https://doi.org/10.1093/nar/gkv1072
Holy, J. M. (2002). Curcumin disrupts mitotic spindle structure and induces micronucleation in MCF-7 breast cancer cells. Mutation Research, 518(1), 71–84. https://doi.org/10.1016/s1383-5718(02)00076-1
Joukov, V., & Nicolo, A. D. (2018). Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Science Signaling, 11(543). https://doi.org/10.1126/scisignal.aar4195
Kaushik, A. C., Mehmood, A., Dai, X., & Wei, D.-Q. (2020). A comparative chemogenic analysis for predicting Drug-Target Pair via Machine Learning Approaches. Scientific Reports, 10(1), 6870. https://doi.org/10.1038/s41598-020-63842-7
Kishimoto, T. (2015). Entry into mitosis: A solution to the decades-long enigma of MPF. Chromosoma, 124(4), 417–428. https://doi.org/10.1007/s00412-015-0508-y
Krenn, V., & Musacchio, A. (2015). The Aurora B Kinase in Chromosome Bi-Orientation and Spindle Checkpoint Signaling. Frontiers in Oncology, 5, 225. https://doi.org/10.3389/fonc.2015.00225
Lai, H.-W., Chien, S.-Y., Kuo, S.-J., Tseng, L.-M., Lin, H.-Y., Chi, C.-W., & Chen, D.-R. (2011). The Potential Utility of Curcumin in the Treatment of HER-2-Overexpressed Breast Cancer: An In Vitro and In Vivo Comparison Study with Herceptin. Evidence-Based Complementary and Alternative Medicine, 2012, e486568. https://doi.org/10.1155/2012/486568
Lee, H.-J., Hwang, H.-I., & Jang, Y.-J. (2010). Mitotic DNA damage response: Polo-like kinase-1 is dephosphorylated through ATM-Chk1 pathway. Cell Cycle (Georgetown, Tex.), 9(12), 2389–2398. https://doi.org/10.4161/cc.9.12.11904
Lee, K., & Rhee, K. (2011). PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. The Journal of Cell Biology, 195(7), 1093–1101. https://doi.org/10.1083/jcb.201106093
Lee, M., Rivera-Rivera, Y., Moreno, C. S., & Saavedra, H. I. (2017). The E2F activators control multiple mitotic regulators and maintain genomic integrity through Sgo1 and BubR1. Oncotarget, 8(44), 77649–77672. https://doi.org/10.18632/oncotarget.20765
Lestari, B., Nakamae, I., Yoneda-Kato, N., Morimoto, T., Kanaya, S., Yokoyama, T., Shionyu, M., Shirai, T., Meiyanto, E., & Kato, J. (2019). Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-51244-3
Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., Li, B., & Liu, X. S. (2017). TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Research, 77(21), e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307
Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z., & Zhang, B. (2019). WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Research, 47(W1), W199–W205. https://doi.org/10.1093/nar/gkz401
Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Systems, 1(6), 417–425. https://doi.org/10.1016/j.cels.2015.12.004
Lindqvist, A., Rodríguez-Bravo, V., & Medema, R. H. (2009). The decision to enter mitosis: Feedback and redundancy in the mitotic entry network. The Journal of Cell Biology, 185(2), 193–202. https://doi.org/10.1083/jcb.200812045
Liu, H.-T., & Ho, Y.-S. (2018). Anticancer effect of curcumin on breast cancer and stem cells. Food Science and Human Wellness, 7(2), 134–137. https://doi.org/10.1016/j.fshw.2018.06.001
Lukas, C., Sørensen, C. S., Kramer, E., Santoni-Rugiu, E., Lindeneg, C., Peters, J. M., Bartek, J., & Lukas, J. (1999). Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature, 401(6755), 815–818. https://doi.org/10.1038/44611
Meiyanto, E., Husnaa, U., Kastian, R. F., Putri, H., Larasati, Y. A., Khumaira, A., Pamungkas, D. D. P., Jenie, R. I., Kawaichi, M., Lestari, B., Yokoyama, T., & Kato, J. (2021). The Target Differences of Anti-Tumorigenesis Potential of Curcumin and its Analogues Against HER-2 Positive and Triple-Negative Breast Cancer Cells. Advanced Pharmaceutical Bulletin, 11(1), 188–196. https://doi.org/10.34172/apb.2021.020
Mimura, K., Ando, T., Poschke, I., Mougiakakos, D., Johansson, C. C., Ichikawa, J., Okita, R., Nishimura, M. I., Handke, D., Krug, N., Choudhury, A., Seliger, B., & Kiessling, R. (2011). T cell recognition of HLA-A2 restricted tumor antigens is impaired by the oncogene HER2. International Journal of Cancer, 128(2), 390–401. https://doi.org/10.1002/ijc.25613
Novitasari, D., Jenie, R. I., Utomo, R. Y., Kato, J. Y., & Meiyanto, E. (2021). CCA-1.1, a Novel Curcumin Analog, Exerts Cytotoxic anti- Migratory Activity toward TNBC and HER2-Enriched Breast Cancer Cells. Asian Pacific Journal of Cancer Prevention: APJCP, 22(6), 1827–1836. https://doi.org/10.31557/APJCP.2021.22.6.1827
Novitasari, D., Jenie, R. I., Wulandari, F., Putri, D. D. P., Kato, J., & Meiyanto, E. (2021). A Curcumin Like Structure (CCA-1.1) Induces Permanent Mitotic Arrest (Senescence) on Triple Negative Breast Cancer (TNBC) Cells, 4T1. Research Journal of Pharmacy and Technology, 14(8), 4375–4382. https://doi.org/10.52711/0974-360X.2021.00760
Novitasari, D., Wulandari, F., Jenie, R. I., Utomo, R. Y., Kato, J.-Y., & Meiyanto, E. (2021). A new curcumin analog, CCA-1.1, induces cell cycle arrest and senescence toward ER-positive breast cancer cells. International Journal of Pharmaceutical Research, 13(1), 1–9.
Peart, M. J., Poyurovsky, M. V., Kass, E. M., Urist, M., Verschuren, E. W., Summers, M. K., Jackson, P. K., & Prives, C. (2010). APC/C(Cdc20) targets E2F1 for degradation in prometaphase. Cell Cycle (Georgetown, Tex.), 9(19), 3956–3964. https://doi.org/10.4161/cc.9.19.13162
Rizzolio, F., Esposito, L., Muresu, D., Fratamico, R., Jaraha, R., Caprioli, G. V., & Giordano, A. (2010). RB gene family: Genome-wide ChIP approaches could open undiscovered roads. Journal of Cellular Biochemistry, 109(5), 839–843. https://doi.org/10.1002/jcb.22448
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102
Sun, S., Zhou, W., Li, X., Peng, F., Yan, M., Zhan, Y., An, F., Li, X., Liu, Y., Liu, Q., & Piao, H. (2021). Nuclear Aurora kinase A triggers programmed death-ligand 1-mediated immune suppression by activating MYC transcription in triple-negative breast cancer. Cancer Communications (London, England), 41(9), 851–866. https://doi.org/10.1002/cac2.12190
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. von. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1), W556–W560. https://doi.org/10.1093/nar/gkz430
Thu, K. L., Soria-Bretones, I., Mak, T. W., & Cescon, D. W. (2018). Targeting the cell cycle in breast cancer: Towards the next phase. Cell Cycle, 17(15), 1871–1885. https://doi.org/10.1080/15384101.2018.1502567
Waitzman, J. S., & Rice, S. E. (2014). Mechanism and regulation of kinesin-5, an essential motor for the mitotic spindle. Biology of the Cell, 106(1), 1–12. https://doi.org/10.1111/boc.201300054
Wang, Y., Lee, Y.-M., Baitsch, L., Huang, A., Xiang, Y., Tong, H., Lako, A., Von, T., Choi, C., Lim, E., Min, J., Li, L., Stegmeier, F., Schlegel, R., Eck, M. J., Gray, N. S., Mitchison, T. J., & Zhao, J. J. (2014). MELK is an oncogenic kinase essential for mitotic progression in basal-like breast cancer cells. ELife, 3, e01763. https://doi.org/10.7554/eLife.01763
Wulandari, F., Ikawati, M., Novitasari, D., Kirihata, M., Kato, J., & Meiyanto, E. (2020). New curcumin analog, CCA-1.1, synergistically improves the antiproliferative effect of doxorubicin against T47D breast cancer cells. Indonesian Journal of Pharmacy, 31(4), 244–256.
Wulandari, F., Utomo, R. Y., Novitasari, D., Ikawati, M., Kirihata, M., Kato, J.-Y., & Meiyanto, E. (2021). The anti-migratory activity of a new curcumin analog, CCA-1.1, against T47D breast cancer cells. International Journal of Pharmaceutical Research, 13(1), 11.
Yao, Z.-J., Dong, J., Che, Y.-J., Zhu, M.-F., Wen, M., Wang, N.-N., Wang, S., Lu, A.-P., & Cao, D.-S. (2016). TargetNet: A web service for predicting potential drug-target interaction profiling via multi-target SAR models. Journal of Computer-Aided Molecular Design, 30(5), 413–424. https://doi.org/10.1007/s10822-016-9915-2
Published
2022-12-07
How to Cite
Novitasari, D., Jenie, R. I., Kato, J.- ya, & Meiyanto, E. (2022). Network Pharmacological Analysis Identifies the Curcumin Analog CCA-1.1 Targeting Mitosis Regulatory Process in HER2-Positive Breast Cancer. Indonesian Journal of Pharmacy, 34(1), 54-64. https://doi.org/10.22146/ijp.4453
Section
Research Article