Enhancement Peripheral Regeneration as a Target of Potential Diabetic Neuropathy Treatment from Lumbricus rubellus Fraction DLBS1033N: the role of cell viability and migration
Abstract
Diabetic Peripheral Neuropathy (DPN) significantly affects the quality of life with no definitive therapy currently. Given the pathologic basis for DPN treatment, it's critical to promote neuron regeneration while also restricting nerve degeneration. Schwann cells that play pivotal roles against peripheral regeneration manifest cell proliferation and survival inhibition in diabetic patients consecutively decreased peripheral regeneration capacity. DLBS1033N, a protein hydrolysate obtained from Lumbricus rubellus, has been confirmed to promote Schwann cell line RSC96 growth and survival by induction Nerve Growth Factor (NGF) expression via phosphatidylinositol-3‑kinase (PI3K) pathway. This pathway has an important contribution against Schwann cell proliferation and migration. Herein, the contribution of DLBS1033N to peripheral regeneration on high-glucose (50mM)-induced rat Schwann cell line RSC96 injury, a well-known DPN in vitro cell model. RSC96 were treated with high glucose (50mM) with or without DLBS1033N 25, 50, and 100μg/mL for 24, 48, and 72 h. MTS assay kit were used to evaluate cell viability. DLBS1033N significantly improved cell proliferation in 48 h incubation time with a dose-dependent manner (p < 0.05). Furthermore, DLBS1033N 100μg/ml significantly promoted cell migration by 16% in 48 H incubation (p < 0.05) determined by scratch assay, as the beneficial action to accomplish peripheral regeneration. In conclusion, DLBS1033N enhanced peripheral regeneration which could be used as an effective and promising DPN treatment.
References
Aldarraji, M. (2013). Antioxidant activity and total phenolic content of earthworm paste of Lumbricus rubellus (red worm) and Eudrilus eugenia (African night crawler). Journal of Entomology and Nematology, 5(3), 33–37. https://doi.org/10.5897/JEN2013.0075
Almeida, V. M., Bezerra Jr., M. A., Nascimento, J. C., & Amorim, L. M. F. (2019). Anticancer drug screening: Standardization of in vitro wound healing assay. Jornal Brasileiro de Patologia e Medicina Laboratorial, 55(6). https://doi.org/10.5935/1676-2444.20190054
Anton, E. S., Weskamp, G., Reichardt, L. F., & Matthew, W. D. (1994). Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proceedings of the National Academy of Sciences, 91(7). https://doi.org/10.1073/pnas.91.7.2795
Chang, Y.-M., Shih, Y.-T., Chen, Y.-S., Liu, C.-L., Fang, W.-K., Tsai, C.-H., Tsai, F.-J., Kuo, W.-W., Lai, T.-Y., & Huang, C.-Y. (2011). Schwann Cell Migration Induced by Earthworm Extract via Activation of PAs and MMP2/9 Mediated through ERK1/2 and p38. Evidence-Based Complementary and Alternative Medicine, 2011, 1–12. https://doi.org/10.1093/ecam/nep131
Cheng, Y.-C., Chu, L.-W., Chen, J.-Y., Hsieh, S.-L., Chang, Y.-C., Dai, Z.-K., & Wu, B.-N. (2020). Loganin Attenuates High Glucose-Induced Schwann Cells Pyroptosis by Inhibiting ROS Generation and NLRP3 Inflammasome Activation. Cells, 9(9), 1948. https://doi.org/10.3390/cells9091948
Dewanjee, S., Das, S., Das, A. K., Bhattacharjee, N., Dihingia, A., Dua, T. K., Kalita, J., & Manna, P. (2018). Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. European Journal of Pharmacology, 833, 472–523. https://doi.org/10.1016/j.ejphar.2018.06.034
Ding, W.-L. (2012). High glucose levels increase the expression of neurotrophic factors associated with p-p42/p44 MAPK in Schwann cells in vitro. Molecular Medicine Reports. https://doi.org/10.3892/mmr.2012.896
Gonçalves, N. P., Vægter, C. B., Andersen, H., Østergaard, L., Calcutt, N. A., & Jensen, T. S. (2017). Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nature Reviews Neurology, 13(3), 135–147. https://doi.org/10.1038/nrneurol.2016.201
Grdisa, M., Popovic, M., & Hrzenjak, T. (2004). Stimulation of growth factor synthesis in skin wounds using tissue extract (G-90) from the earthworm Eisenia foetida. Cell Biochemistry and Function, 22(6), 373–378. https://doi.org/10.1002/cbf.1121
Gumy, L. F., Bampton, E. T. W., & Tolkovsky, A. M. (2008). Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Molecular and Cellular Neuroscience, 37(2), 298–311. https://doi.org/10.1016/j.mcn.2007.10.004
Hidayat, N., Nugrahany, Y. D., Permatasari, V. R., & Nurika, I. (2021). Optimization of dissolved proteins in extracts of earthworm (Lumbricus rubellus) with factor adding concentration of papain enzyme and earthworms. IOP Conference Series: Earth and Environmental Science, 924(1), 012076. https://doi.org/10.1088/1755-1315/924/1/012076
Jiang, Z., Bian, M., Wu, J., Li, D., Ding, L., & Zeng, Q. (2020). Oltipraz Prevents High Glucose-Induced Oxidative Stress and Apoptosis in RSC96 Cells through the Nrf2/NQO1 Signalling Pathway. BioMed Research International, 2020, 1–8. https://doi.org/10.1155/2020/5939815
Karsono, A. H., Tjandrawinata, R. R., & Suhartono, M. T. (2018). Lumbricus rubellus Protein Fraction DLBS1033N Increases Nerve Growth Factor Expression via Tyrosine Kinase Activation. American Journal of Biochemistry and Biotechnology, 14(1), 29–38. https://doi.org/10.3844/ajbbsp.2018.29.38
Li, R., Ma, J., Wu, Y., Nangle, M., Zou, S., Li, Y., Yin, J., Zhao, Y., Xu, H., Zhang, H., Li, X., Ye, Q. song, Wang, J., & Xiao, J. (2017). Dual Delivery of NGF and bFGF Coacervater Ameliorates Diabetic Peripheral Neuropathy via Inhibiting Schwann Cells Apoptosis. International Journal of Biological Sciences, 13(5), 640–651. https://doi.org/10.7150/ijbs.18636
Liu, Y., Shao, S., & Guo, H. (2020). Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy. Life Sciences, 248, 117459. https://doi.org/10.1016/j.lfs.2020.117459
Mizisin, A. P. (2014). Mechanisms of diabetic neuropathy. In Handbook of Clinical Neurology (Vol. 126, pp. 401–428). Elsevier. https://doi.org/10.1016/B978-0-444-53480-4.00029-1
Pittenger, G., & Vinik, A. (2003). Nerve Growth Factor and Diabetic Neuropathy. 4, 271–285. https://doi.org/10.1080/15438600390249718
Pop-Busui, R., Boulton, A. J. M., Feldman, E. L., Bril, V., Freeman, R., Malik, R. A., Sosenko, J. M., & Ziegler, D. (2017). Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care, 40(1), 136–154. https://doi.org/10.2337/dc16-2042
Rodrigues, M., Carlesso, W. M., Kuhn, D., Altmayer, T., Martini, M. C., Tamiosso, C. D., Mallmann, C. A., De Souza, C. F. V., Ethur, E. M., & Hoehne, L. (2017). Enzymatic hydrolysis of the Eisenia andrei earthworm: Characterization and evaluation of its properties. Biocatalysis and Biotransformation, 35(2), 110–119. https://doi.org/10.1080/10242422.2017.1278754
Sango, K., & Yamauchi, J. (Eds.). (2014). Schwann Cell Development and Pathology. Springer Japan. https://doi.org/10.1007/978-4-431-54764-8
Singh, R., Kishore, L., & Kaur, N. (2014). Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacological Research, 80, 21–35. https://doi.org/10.1016/j.phrs.2013.12.005
Takaku, S., Tsukamoto, M., Niimi, N., Yako, H., & Sango, K. (2021). Exendin-4 Promotes Schwann Cell Survival/Migration and Myelination In Vitro. International Journal of Molecular Sciences, 22(6), 2971. https://doi.org/10.3390/ijms22062971
Tiong, Y. L., Ng, K. Y., Koh, R. Y., Ponnudurai, G., & Chye, S. M. (2019). Melatonin Prevents Oxidative Stress-Induced Mitochondrial Dysfunction and Apoptosis in High Glucose-Treated Schwann Cells via Upregulation of Bcl2, NF-κB, mTOR, Wnt Signalling Pathways. Antioxidants, 8(7), 198. https://doi.org/10.3390/antiox8070198
Tosaki, T., Kamiya, H., Yasuda, Y., Naruse, K., Kato, K., Kozakae, M., Nakamura, N., Shibata, T., Hamada, Y., Nakashima, E., Oiso, Y., & Nakamura, J. (2008). Reduced NGF secretion by Schwann cells under the high glucose condition decreases neurite outgrowth of DRG neurons. Experimental Neurology, 213(2), 381–387. https://doi.org/10.1016/j.expneurol.2008.06.017
Trisina, J., Sunardi, F., Suhartono, M. T., & Tjandrawinata, R. R. (2011). DLBS1033, A Protein Extract from Lumbricus rubellus , Possesses Antithrombotic and Thrombolytic Activities. Journal of Biomedicine and Biotechnology, 2011, 1–7. https://doi.org/10.1155/2011/519652
Vasko, R., Koziolek, M., Ikehata, M., Rastaldi, M. P., Jung, K., Schmid, H., Kretzler, M., Müller, G. A., & Strutz, F. (2009). Role of basic fibroblast growth factor (FGF-2) in diabetic nephropathy and mechanisms of its induction by hyperglycemia in human renal fibroblasts. American Journal of Physiology-Renal Physiology, 296(6), F1452–F1463. https://doi.org/10.1152/ajprenal.90352.2008
Wang, W., Hao, Y., & Li, F. (2019). Notoginsenoside R1 alleviates high glucose-evoked damage in RSC96 cells through down-regulation of miR-503. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3947–3954. https://doi.org/10.1080/21691401.2019.1671434
Wu, Y., Xue, B., Li, X., & Liu, H. (2012). Puerarin prevents high glucose-induced apoptosis of Schwann cells by inhibiting oxidative stress. Neural Regeneration Research., 7(33), 2583–2591. https://doi.org/10.3969/j.issn.1673-5374.2012.33.003
Zhao, Y.-G., Li, H., Xu, W., Luo, J., & Xu, R.-A. (2010). An Overview of the Fibrinolytic Enzyme from Earth-worm: An Overview of the Fibrinolytic Enzyme from Earth-worm. Chinese Journal of Natural Medicines, 8(4), 301–308. https://doi.org/10.3724/SP.J.1009.2010.00301