B-Cell Conserved Epitope Screening and In Silico Cloning of Envelope Glycoprotein from Ebola Virus (EBOV) For Vaccine Candidate Construction
Abstract
Ebola virus (EBOV) is a type of RNA virus from the family of Filoviridae. The 2014-2016 Ebola outbreak in African countries Guinea, Liberia and Sierra Leone has a total of 28,616 cases and 11,310 deaths. People suffering from Ebola disease reported to have symptoms such as fever, body aches, diarrhea and internal and external bleeding. Death from Ebola is mostly caused by multi-organ failure due to internal bleeding and fluid loss. Another Ebola outbreak has spiked this February 2021, suggesting low effectivity of the previous vaccines used. Zaire Ebola virus (EBOV) is known to be the species highly involved on the recent outbreak with a high mortality rate. This study is carried out to design B-cell epitope Ebola vaccine based on the conserved region of Zaire EBOV glycoprotein. Reverse vaccinology and immunoinformatic approaches are used in this study. Samples of Zaire EBOV glycoprotein sequences were retrieved from GenBank, NCBI. The 3D modelling was done by using SWISS-MODEL web server and PyMol software. Phylogenetic tree analysis was also done by using MEGA X. B-cell epitope prediction was done by BepiPred 2.0 and Emini Surface Accessibility using IEDB web server. Epitopes were selected based on its conservancy by comparing the sequences with the MEGA X alignment result. Antigenicity, allergenicity and toxicity properties of the peptides were predicted using VaxiJen 2.0, AllerTOP 2.0 and ToxinPred web servers. In silico cloning was done as the final step using pET-24a(+) expression vector. This study revealed that peptide “LEIKKPD”, “TGFGTNETEYLF”, “PYFGPAA”, “PYFGPA”, and “KLSSTNQL” are the best candidate of B-cell epitope vaccine. Phylogenetic tree and 3D modelling successfully showed the genetic and structural differences of Zaire EBOV GP originating from various countries. In silico cloning was also done using pET28a(+) expression vector to design clone vector map to be used for the next phase of vaccine development.
References
Agnolon, V., Kiseljak, D., Wurm, M. J., Wurm, F. M., Foissard, C., Gallais, F., Wehrle, S., Munoz-Fontela, C., Bellanger, L., Correia, B. E., Corradin, G., and Spertini, F. 2020. Designs and characterization of subunit Ebola GP vaccine candidates: implications for immunogenicity. Frontiers in Immunology, 11(586595).
Ansori, A. N. M., Kharisma, V. D., Antonius, A., Tacharina, M. R., and Rantam, F. A. 2020. Immunobioinformatics analysis and phylogenetic tree construction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Indonesia: spike glycoprotein gene. Jurnal Teknologi Laboratorium, 9(1), 13-20.
Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., and Schwede, T. 2017. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Research, 45(D1), D313–D319.
Bosworth, A., Rickett, N. Y., Dong, X. F., Ng, L. F. P., Dorival, I. G., Matthews, D. A., Fletcher, T., Jacobs, M., Thomson, E. C., Carroll, M. W., and Hiscox, J. A. 2021. Analysis of an Ebola virus disease survivor whose host and viral markers were predictive of death indicates the effectiveness of medical countermeasures and supportive care. Genome Medicine, 13(5).
Bramucci, E., Paiardini, A., Bossa, F., and Pascarella, S. 2012. PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL. BMC Bioinformatics, 13(4).
Chukwudozie, O. S., Duru, V. C., Ndiribe, C. C., Aborode, A. T., Oyebanji, V. O., and Emikpe, B. O. 2021. The relevance of bioinformatics applications in the discovery of vaccine candidates and potential drugs for COVID-19 treatment. Bioinformaics and Biology Insights, 15(1), 1-8.
Cox, R. J., and Brokstad, K. A. 2020. Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nature Reviews Immunology, 20(1), 581-582.
Dimitrov, I., Flower, D. R., and Doytchinova, I. 2013. AllerTOP - a server for in silico prediction of allergens. BMC Bioinformatics, 14(6).
Doytchinova, I. A., and Flower, D. R. 2007. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(4).
Edgar, R. C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5(113).
Ghosh, P., Bhakta, S., Bhattacharya, M., Sharma, A. R., Sharma, G., Lee, S. S., and Chakraborty, C. 2021. A novel multi-epitopic peptide vaccine candidate against Helicobacter pylori: In-Silico identification, design, cloning and validation through molecular dynamics. International Journal of Peptide Research and Therapeutics, 20(1), 1-18.
Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., and Raghava, G. P. S. 2013. In silico approach of predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957.
Jespersen, M. C., Peters, B., Nielsen, M., and Marcatili, P. 2017. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24-W29.
Kadanali, A., and Karagoz, G. 2015. An overview of Ebola virus disease. Northern Clinics of Istanbul, 2(1), 81-86.
Kamens, J. 2015. The Addgene repository: An international nonprofit plasmid and data resource. Nucleic Acids Research, 43(1), D1152-D115.
Keita, A. K., Koundouno, F. R., Faye, M., Düx, A., Hinzmann, J., Diallo, H., Ayouba, A., Le Marcis, F., Soropogui, B., Ifono, K., Diagne, M. M., Sow, M. S., Bore, J. A., Calvignac-Spencer, S., Vidal, N., Camara, J., Keita, M. B., Renevey, A., Diallo, A., Soumah, A. K., Millimono, S. L., Mari-Saez, A., Diop, M., Doré, A., Soumah, F. Y., Kourouma, K., Vielle, N. J., Loucoubar, C., Camara, I., Kourouma, K., Annibaldis, G., Bah, A., Thielebein, A., Pahlmann, M., Pullan, S. T., Carroll, M. W., Quick, J., Formenty, P., Legand, A., Pietro, K., Wiley, M. R., Tordo, N., Peyrefitte, C., McCrone, J. T., Rambaut, A., Sidibé, Y., Barry, M. D., Kourouma, M., Saouromou, C. D., Condé, M., Baldé, M., Povogui, M., Keita, S., Diakite, M., Bah, M. S., Sidibe, A., Diakite, D., Sako, F. B., Traore, F. A., Ki-Zerbo, G. A., Lemey, P., Günther, S., Kafetzopoulou, L. E., Sall, A. A., Delaporte, E., Duraffour, S., Faye, O., Leendertz, F. H., Peeters, M., Toure, A., and Magassouba, N. F. 2021. Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks. Nature, 597(7877), 539-543.
Kemenesi, G., Kurucz, K., Dallos, B., Zana, B., Földes, F., Boldogh, S., Görföl, T., Carroll, M. W., and Jakab, F. 2018. Re-emergence of Lloviu virus in Miniopterus schreibersii bats. Emerging Microbes and Infections, 7(66).
Khan, F., Niaz, K., and Abdollahi, M. 2018. Toxicity of biologically active peptides and future safety aspects: an update. Current Drug Discovery Technologies, 15(3), 236–242.
Kharisma, V. D., and Ansori, A. N. M. 2020. Construction of epitope-based peptide vaccine against SARS-CoV-2: Immunoinformatics study. Journal of Pure and Applied Microbiology, 4(1), 999–1005.
Kharisma, V. D., Ansori, A. N. M., Posa, A. N. V., Rizky, W. C., Permana, S., and Parikesit, A. A. 2021. Conserved B-cell epitope identification of envelope glycoprotein (GP120) HIV-1 to develop multi-strain vaccine candidate through bioinformatics approach. Jurnal Teknologi Laboratorium, 10(1), 6-13.
Khatoon, N., Pandey, R. K., and Prajapati, V. K. 2017. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7(8285).
Kuhl, A., and Pohlmann, S. 2012. How Ebola virus counters the interferon system. Zoonoses and Public Health, 59(2), 116-131.
Kyrychenko, A. M., Antipov, I. O., and Hrynchuk, K. V. 2017. Phylogenetic analysis of Ukranian BYMV isolates from soybeans and beans. Cytology and Genetics, 51(3), 173-177.
Le Bert, N., Tan, A. T., Kunasegaran, K., Tham, C. Y. L., Hafezi, M., Chia, A., Chng, M. H. Y., Lin, M., Tan, N., Linster, M., Chia, W. N., Chen, M. I., Wang, L. F., Ooi, E. E., Kalimuddin, S., Tambyah, P. A., Low, J. G., Tan, Y. J., and Bertoletti, A. 2020. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 584(7821), 457-462.
Lee, J. E., and Saphire, E. O. 2009. Ebolavirus glycoprotein structure and mechanism of entry. Future Virology, 4(6), 621-635.
Liu, S. Q., Deng, C. L., Yuan, Z. M., Rayner, S., and Zhang, B. 2015. Identifying the molecular pattern of evolution for Zaire ebolavirus in the 2014 outbreak in West Africa. Infection, Genetics and Evolution, 32(1), 51-59.
Maroney, K. J., Pinski, A. N., Marzi, A., and Messaoudi, I. 2021. Transcriptional analysis of infection with early or late isolates from the 2013-2018 West Africa Ebola virus epidemic does not suggest attenuated pathogenicity as a result of genetic variation. Frontiers in Microbiology, 12(714817).
Maxwell, P. I., and Popelier, P. L. A. 2017. Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective. Journal of Computational Chemistry, 38(29), 2459-2474.
Mitra, M. 2018. Infectious characteristics of Ebola virus. International Journal of Virology and AIDS, 5(44).
Pandey, R. K., Bhatt, T. K., and Prajapati, V. K. 2018. Novel immunoinformatics approaches to design multi-epitope subunit vaccine for Malaria by investigating Anopheles salivary protein. Scientific Reports, 8(1125).
Parvizpour, S., Pouseif, M. M., Razmara, J., Rafi, M. A., and Omidi, Y. 2020. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discovery Today, 25(6), 1034-1042.
Rantam, F. A., Kharisma, V. D., Sumartono, C., Nugraha, J., Wijaya, A. Y., Susilowati, H., Kuncorojakti, S., and Nugraha, A. P. 2021. Molecular docking and dynamic simulation of conserved B cell epitope of SARS-CoV-2 glycoprotein Indonesian isolates: an immunoinformatic approach. F1000 Research, 10(813).
Singh, R. J., Dhama, K., Malik, Y. S., Ramakrishnan, M. A., Karthik, K., Khandia, R., Tiwari, R., Munjal, A., Saminathan, M., Sachan, S., Desingu, P. A., Kattoor, J. J., Iqbal, H. M. N., and Joshi, S. K. 2017. Ebola virus – epidemiology, diagnosis, and control: threat to humans, lessons learnt, and preparedness plans – an update on its 40 year's journey. Veterinary Quarterly, 37(1), 98-135.
Su, Y., and Stahelin, R. V. 2020. The minor protein matrix VP24 from ebola virus lacks direct lipid binding properties. Viruses, 12(869), 1-14.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., and Schwede, T. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.
Zhang, A. P. P., Abelson, D. M., Bornholdt, Z. A., Liu, T., Woods, V. L. Jr., and Saphire, E. O. 2012. The ebolavirus VP24 interferon antagonist: know your enemy. Virulence, 3(5), 440-445.