Development of Bacterial Cocktail of Strains Staphylococcus hominis, Staphylococcus warneri, Bacillus subtilis, and Micrococcus luteus as active ingredients for Skin Care Formula

  • Fathan Luthfi Hawari University of Indonesia
  • Tesya Almadea University of Indonesia
  • Karina Hananingsih University of Indonesia
  • Ahmad Baikuni University of Indonesia
  • Amarila Malik University of Indonesia https://orcid.org/0000-0003-4899-6778
  • Ayun Erwina Arifianti Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
  • Delly Ramadon Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
  • Conny Riana Tjampakasari Laboratory of Microbiology, Faculty of Medicine, Universitas Indonesia, Central Jakarta, DKI Jakarta, 10320, Indonesia
Keywords: Bacterial Cocktail, Skin Commensal, Antibacterial, Antioxidant, Skin Sensitivity Test

Abstract

The microbial-based skin health care products that balance one's skin microbiome mimicking healthy skin are rapidly growing. Postbiotics gain more advantages in safety, shelf life, active peptides, and other active compounds such as GABA, which benefit human skin. We have isolated skin commensal bacteria, i.e., Staphylococcus hominis MBF12-19J, Staphylococcus warneri MBF02-19J, Micrococcus luteus MBF05-19J and Bacillus subtilis MBF10-19J in our previous study. This study aimed to make a formula of bacterial cocktail (BC) of those strains, elevate the BC formula into a ferment lysate (FL), and characterize the activities and test for skin sensitivity. The antibacterial activity was done by conducting a competition test using Propionibacterium acnes as an indicator bacterium, whereas the antioxidant activity assay was carried out using the DPPH method. The skin sensitivity was tested using the patch test method. The BC was lyzed by optimizing the enzymatic and ultrasonication methods, whereas sucrose was added as lyoprotectant to obtain a stable powder FL. Potential activity to inhibit P. acnes growth was achieved by a formula of FL consisting of M. luteus MBF05-19J: B. subtilis MBF10-19J: S. warneri MBF02-19J: S. hominis MBF12-19J in a ratio 1.5:1.5:0.5:0.5 or equivalent to DNA copy number/mL 1.01E+16: 1.14E+24: 1.96E+22: 1.50E+18. Skin sensitivity test results showed no sensitivity reaction, guaranteeing that CFS and FL are safe to use for the skin. Sucrose-FL at 12% sucrose formula showed higher physical stability than those without. However, the result of potential antioxidants showed mild and very mild activities compared to standard ascorbic acid.

Author Biography

Amarila Malik, University of Indonesia

References

Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdova, A. F., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science and Technology, 75(June 2017), 105–114. https://doi.org/10.1016/j.tifs.2018.03.009
Azevedo, A. C., Bento, C. B. P., Ruiz, J. C., Queiroz, M. V., & Mantovani, H. C. (2015). Distribution and genetic diversity of bacteriocin gene clusters in rumen microbial genomes. Applied and Environmental Microbiology, 81(20), 7290–7304. https://doi.org/10.1128/AEM.01223-15
Baikuni A., Amarila M., Ardiyansyah H., Wanyodiharjo M. R., Fathan L. H. (2022). Optimization of Composition and Determination of Up-scale Process of Bacterial Cocktail Fermentation of Four Skin Commensal Strains Staphylococcus hominis, Staphylococcus warneri, Bacillus subtilis, and Micrococcus luteus. (in submission)
Beri, K. (2018). Skin microbiome & host immunity: Applications in regenerative cosmetics & transdermal drug delivery. Future Science OA, 4(6). https://doi.org/10.4155/fsoa-2017-0117
Choi, E. J., Lee, H. J., Kim, W. J., Han, K. Il, Iwasa, M., Kobayashi, K., Debnath, T., Tang, Y., Kwak, Y. S., Yoon, J. H., & Kim, E. K. (2019). Enterococcus faecalis EF-2001 protects DNBS-induced inflammatory bowel disease in mice model. PLoS ONE, 14(2), 1–12. https://doi.org/10.1371/JOURNAL.PONE.0210854
Clogston, J. D., & Patri, A. K. (2011). Zeta potential measurement. Methods in Molecular Biology (Clifton, N.J.), 697, 63–70. https://doi.org/10.1007/978-1-60327-198-1_6
Duarte, I., Silveira, J. E. P. S., Hafner, M. de F. S., Toyota, R., & Pedroso, D. M. M. (2017). Sensitive skin: Review of an ascending concept. Anais Brasileiros de Dermatologia, 92(4), 521–525. https://doi.org/10.1590/abd1806-4841.201756111
Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature Reviews Microbiology, 9(4), 244–253. https://doi.org/10.1038/nrmicro2537
Gumustas, M., Sengel-Turk, C. T., Gumustas, A., Ozkan, S. A., & Uslu, B. (2017). Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems. In Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. Elsevier Inc. https://doi.org/10.1016/B978-0-323-52725-5.00005-8
Hamad, G. M., Botros, W. A., & Hafez, E. E. (2017). Combination of probiotic filtrates as antibacterial agent against selected some pathogenic bacteria in milk and cheese. International Journal of Dairy Science, 12(6), 368–376. https://doi.org/10.3923/ijds.2017.368.376
Hofer, A., Legat, F. J., Gruber-Wackernagel, A., Quehenberger, F., & Wolf, P. (2011). Topical liposomal DNA-repair enzymes in polymorphic light eruption. Photochemical and Photobiological Sciences, 10(7), 1118–1128. https://doi.org/10.1039/c1pp05009e
Jimenez, M., Langer, R., & Traverso, G. (2019). Microbial therapeutics: New opportunities for drug delivery. Journal of Experimental Medicine, 216(5), 1005–1009. https://doi.org/10.1084/jem.20190609
Kannan, V., Balabathula, P., Thoma, L. A., & Wood, G. C. (2015). Effect of sucrose as a lyoprotectant on the integrity of paclitaxel-loaded liposomes during lyophilization. Journal of Liposome Research, 25(4), 270–278. https://doi.org/10.3109/08982104.2014.992023
Kato, S., Haruta, S., Cui, Z. J., Ishii, M., & Igarashi, Y. (2008). Network relationships of bacteria in a stable mixed culture. Microbial Ecology, 56(3), 403–411. https://doi.org/10.1007/s00248-007-9357-4
Khayyira, A. S., Rosdina, A. E., Irianti, M. I., & Malik, A. (2020). Simultaneous profiling and cultivation of the skin microbiome of healthy young adult skin for the development of therapeutic agents. Heliyon, 6(4), e03700. https://doi.org/10.1016/j.heliyon.2020.e03700
Molyneux P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating anti-oxidant activity. Songklanakarin Journal of Science and Technology, 26(May), 211–219.
O. Oruko, R., O. Odiyo, J., & N. Edokpayi, J. (2019). The Role of Leather Microbes in Human Health. Role of Microbes in Human Health and Diseases. https://doi.org/10.5772/intechopen.81125
Pauer, H., Glatthardt, T., Ferreira, N. V., Ferreira, R. B. R., & Antunes, L. C. M. (2019). Bioactive molecules of the human microbiome: Skin, respiratory tract, intestine. Microbiome and Metabolome in Diagnosis, Therapy, and Other Strategic Applications, 115–125. https://doi.org/10.1016/B978-0-12-815249-2.00012-9
Powthong, P., & Suntornthiticharoen, P. (2017). Antimicrobial and Enzyme Activity Produced By Bacillus Spp. Isolated From Soil. International Journal of Pharmacy and Pharmaceutical Sciences, 9(3), 205. https://doi.org/10.22159/ijpps.2017v9i3.13895
Selvamani, V. (2018). Stability Studies on Nanomaterials Used in Drugs. In Characterization and Biology of Nanomaterials for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814031-4.00015-5
Shen, Q., Shang, N., & Li, P. (2011). In vitro and in vivo antioxidant activity of bifidobacterium animalis 01 isolated from centenarians. Current Microbiology, 62(4), 1097–1103. https://doi.org/10.1007/s00284-010-9827-7
Siregar, T. M., & Kristanti, C. (2019). Mikroenkapsulasi Senyawa Fenolik Ekstrak Daun Kenikir (Cosmos caudatus K.). Jurnal Aplikasi Teknologi Pangan, 8(1). https://doi.org/10.17728/jatp.3304
Sulastri, E., Ibrahim, N., & Budiarti, S. (2019). Mikroenkapsulasi Likopen dari Buah Tomat dengan Metode Penguapan Pelarut: Microencapsulation of Lycopene from Tomato Fruit by Solvent Evaporation Method. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 5(1), 108 - 116. https://doi.org/10.22487/j24428744.2019.v5.i1.12406
Surini, S. (2014). JIKI 2014 Srifiana PCSPh Mikrokapsul. Ilmu Kefarmasian Indonesia.
Tanamool, V., Hongsachart, P., & Soemphol, W. (2020). Screening and characterisation of gamma-aminobutyric acid (GABA) producing lactic acid bacteria isolated from Thai fermented fish (Plaa-som) in Nong Khai and its application in Thai fermented vegetables (Som-pak). Food Science and Technology, 40(2), 483–490. https://doi.org/10.1590/fst.05419
Vázquez-Castellanos, J. F., Biclot, A., Vrancken, G., Huys, G. R., & Raes, J. (2019). Design of synthetic microbial consortia for gut microbiota modulation. Current Opinion in Pharmacology, 49, 52–59. https://doi.org/10.1016/j.coph.2019.07.005
Vieco-Saiz, N., Belguesmia, Y., Raspoet, R., Auclair, E., Gancel, F., Kempf, I., & Drider, D. (2019). Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology, 10(February), 1–17. https://doi.org/10.3389/fmicb.2019.00057
Published
2023-03-10
How to Cite
Fathan Luthfi Hawari, Tesya Almadea, Karina Hananingsih, Ahmad Baikuni, Amarila Malik, Arifianti, A. E., Ramadon, D., & Tjampakasari, C. R. (2023). Development of Bacterial Cocktail of Strains Staphylococcus hominis, Staphylococcus warneri, Bacillus subtilis, and Micrococcus luteus as active ingredients for Skin Care Formula. Indonesian Journal of Pharmacy, 34(2), 236-244. https://doi.org/10.22146/ijp.4174
Section
Research Article