Bioinformatic and Molecular Interaction Studies Uncover That CCA-1.1 AND PGV-1 Differentially Target Mitotic Regulatory Protein and Have a Synergistic Effect against Leukemia Cells
Abstract
Numerous studies demonstrated CCA-1.1, the modified compound from PGV-1, inhibits tumor cells growth in breast and colorectal cancer. This time, we used bioinformatics and molecular interaction approaches to ascertain the potential CCA-1.1 activity target focusing on leukemia, along with the cytotoxic test in leukemia cells. Genomics data expression was collected through the COSMIC database by selecting gene sets from K562 cells as a model for chronic myelogenous leukemia (CML). We identified CCA-1.1 and PGV-1 predicted targets through SwissTargetPrediction. The overlapping genes between the CCA-1.1, PGV-1, and K562 cells were chosen for further analysis. We narrowed down the potential targets by using the list of genes involved in the cell cycle and mitosis collected through GeneCards. A molecular docking study was applied to determine the molecular interaction between CCA-1.1 or PGV-1 and the predicted protein target. We carried out a cytotoxic test using a trypan blue exclusion assay. We treated K562 cells with CCA-1.1 and PGV-1 in single and combination treatment to determine the half concentration of growth inhibitory (GI50) and combination index (CI) score. CCA-1.1 and PGV-1 shared similar predicted target genes in mitosis, and interestingly CCA-1.1 were mainly targeted in Aurora A (AURKA) in K562 cells with lower docking scores against the inhibitor in molecular docking analysis. Moreover, each compound exhibited an inhibitory effect similarly, and the co-treatment resulted in a synergistic effect in K562 cells. Collectively, we indicated that CCA-1.1 and PGV-1 possibly targeted mitosis in cell cycle progression, and along with their specific targets, led to their synergistic activity in CML. These findings should be validated through experimental studies to provide more pharmacological activities of CCA-1.1 to cure CML.
References
Eden, R. E., & Coviello, J. M. (2021). Chronic Myelogenous Leukemia. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK531459/
Enserink, J. M., & Kolodner, R. D. (2010). An overview of Cdk1-controlled targets and processes. Cell Division, 5, 11. https://doi.org/10.1186/1747-1028-5-11
Faderl, S., Talpaz, M., Estrov, Z., O’Brien, S., Kurzrock, R., & Kantarjian, H. M. (1999). The biology of chronic myeloid leukemia. The New England Journal of Medicine, 341(3), 164–172. https://doi.org/10.1056/NEJM199907153410306
Ghelli Luserna di Rorà, A., Cerchione, C., Martinelli, G., & Simonetti, G. (2020). A WEE1 family business: Regulation of mitosis, cancer progression, and therapeutic target. Journal of Hematology & Oncology, 13(1), 126. https://doi.org/10.1186/s13045-020-00959-2
Goldenson, B., & Crispino, J. D. (2015). The aurora kinases in cell cycle and leukemia. Oncogene, 34(5), 537–545. https://doi.org/10.1038/onc.2014.14
Hasbiyani, N. A. F., Wulandari, F., Nugroho, E. P., Hermawan, A., & Meiyanto, E. (2021). Bioinformatics Analysis Confirms the Target Protein Underlying Mitotic Catastrophe of 4T1 Cells under Combinatorial Treatment of PGV-1 and Galangin. Scientia Pharmaceutica, 89(3), 38. https://doi.org/10.3390/scipharm89030038
Hochhaus, A., Baccarani, M., Silver, R. T., Schiffer, C., Apperley, J. F., Cervantes, F., Clark, R. E., Cortes, J. E., Deininger, M. W., Guilhot, F., Hjorth-Hansen, H., Hughes, T. P., Janssen, J. J. W. M., Kantarjian, H. M., Kim, D. W., Larson, R. A., Lipton, J. H., Mahon, F. X., Mayer, J., … Hehlmann, R. (2020). European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia, 34(4), 966–984. https://doi.org/10.1038/s41375-020-0776-2
Jiang, M., Zhuang, H., Xia, R., Gan, L., Wu, Y., Ma, J., Sun, Y., & Zhuang, Z. (2017). KIF11 is required for proliferation and self-renewal of docetaxel resistant triple negative breast cancer cells. Oncotarget, 8(54), 92106–92118. https://doi.org/10.18632/oncotarget.20785
Kelly, K. R., Ecsedy, J., Medina, E., Mahalingam, D., Padmanabhan, S., Nawrocki, S. T., Giles, F. J., & Carew, J. S. (2011). The novel Aurora A kinase inhibitor MLN8237 is active in resistant chronic myeloid leukaemia and significantly increases the efficacy of nilotinib. Journal of Cellular and Molecular Medicine, 15(10), 2057–2070. https://doi.org/10.1111/j.1582-4934.2010.01218.x
Lestari, B., Nakamae, I., Yoneda-Kato, N., Morimoto, T., Kanaya, S., Yokoyama, T., Shionyu, M., Shirai, T., Meiyanto, E., & Kato, J. (2019). Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-51244-3
Meiyanto, E., Putri, H., Larasati, Y. A., Utomo, R. Y., Jenie, R. I., Ikawati, M., Lestari, B., Yoneda-Kato, N., Nakamae, I., Kawaichi, M., & Kato, J. (2019). Anti-Proliferative and Anti-Metastatic Potential of Curcumin Analogue, Pentagamavunon-1 (PGV-1), Toward Highly Metastatic Breast Cancer Cells in Correlation With ROS Generation. Advanced Pharmaceutical Bulletin, 9(3), 445–452. https://doi.org/10.15171/apb.2019.053
Meiyanto, E., Septisetyani, E. P., Larasati, Y. A., & Kawaichi, M. (2018). Curcumin Analog Pentagamavunon-1 (PGV-1) Sensitizes Widr Cells to 5-Fluorouracil through Inhibition of NF-κB Activation. Asian Pacific Journal of Cancer Prevention : APJCP, 19(1), 49–56. https://doi.org/10.22034/APJCP.2018.19.1.49
Novitasari, D., Jenie, R. I., Kato, J., & Meiyanto, E. (2021). The integrative bioinformatic analysis deciphers the predicted molecular target gene and pathway from curcumin derivative CCA-1.1 against triple-negative breast cancer (TNBC). Journal of the Egyptian National Cancer Institute, 33(1), 19. https://doi.org/10.1186/s43046-021-00077-1
Novitasari, D., Jenie, R. I., Utomo, R. Y., Kato, J. Y., & Meiyanto, E. (2021). CCA-1.1, a Novel Curcumin Analog, Exerts Cytotoxic anti- Migratory Activity toward TNBC and HER2-Enriched Breast Cancer Cells. Asian Pacific Journal of Cancer Prevention: APJCP, 22(6), 1827–1836. https://doi.org/10.31557/APJCP.2021.22.6.1827
Novitasari, D., Jenie, R. I., Wulandari, F., Putri, D. D. P., Kato, J., & Meiyanto, E. (2021). A Curcumin Like Structure (CCA-1.1) Induces Permanent Mitotic Arrest (Senescence) on Triple Negative Breast Cancer (TNBC) Cells, 4T1. Research Journal of Pharmacy and Technology, 14(8), 4375–4382. https://doi.org/10.52711/0974-360X.2021.00760
Novitasari, D., Wulandari, F., Jenie, R. I., Utomo, R. Y., Kato, J.-Y., & Meiyanto, E. (2021). A new curcumin analog, CCA-1.1, induces cell cycle arrest and senescence toward ER-positive breast cancer cells. International Journal of Pharmaceutical Research, 13(1), 1–9.
Utomo, R. Y., Wulandari, F., Novitasari, D., Lestari, B., Susidarti, R. A., Jenie, R. I., Kato, J., & Meiyanto, E. (n.d.). Preparation and cytotoxic evaluation of PGV-1 derivative, CCA-1.1, as a new curcumin analog with improvedphysicochemical and pharmacological properties. Advanced Pharmaceutical Bulletin, in press.
Wulandari, F., Ikawati, M., Kirihata, M., Kato, J., & Meiyanto, E. (2021). A new curcumin analog, CCA-1.1, induces cell death and cell cycle arrest in WiDr colon cancer cells via ROS generation. Journal of Applied Pharmaceutical Sciences, 11(10), 099–105. https://doi.org/10.7324/JAPS.2021.1101014
Wulandari, F., Ikawati, M., Novitasari, D., Kirihata, M., Kato, J., & Meiyanto, E. (2020). New curcumin analog, CCA-1.1, synergistically improves the antiproliferative effect of doxorubicin against T47D breast cancer cells. Indonesian Journal of Pharmacy, 31(4), 244–256.
Wysong, D. R., Chakravarty, A., Hoar, K., & Ecsedy, J. A. (2009). The inhibition of Aurora A abrogates the mitotic delay induced by microtubule perturbing agents. Cell Cycle, 8(6), 876–888. https://doi.org/10.4161/cc.8.6.7897