Antibacterial and Anti-biofilm- Forming Activity of Secondary Metabolites from Sansevieria trifasciata- Leaves Against Pseudomonas aeruginosa

  • Whika Dewatisari Doctoral Program of Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia
  • Laurentius Hartanto Nugroho Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sleman 55281, Yogyakarta, Indonesia.
  • Endah Retnaningrum Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sleman 55281, Yogyakarta, Indonesia.
  • Yekti Asih P urwestri Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sleman 55281, Yogyakarta, Indonesia.
Keywords: S. trifasciata, P. aeruginosa, antibacterial, anti-biofilm


Sansevieria trifasciata is a herbaceous plant frequently used in traditional medicine with antibacterial potency against Pseudomonas aeruginosa. P. aeruginosa is a known bacterial pathogen that often becomes resistant to traditional antibiotics due to its ability to form biofilms. The objective of this research was to determine whether the ethanolic extract of S. trifasciata has any antibacterial or anti-biofilm-forming activity against P. aeruginosa. Bacterial cell damage with a potential fraction of S. trifasciata ethanolic extract treatment was observed by scanning electron microscopy (SEM). An Anti-biofilm assay was perfomed in 96 wells with crystal violet stain. The minimum inhibitory concentration (MIC) results revealed that at a concentration of 4 mg/mL, the potential fraction of S. trifasciata ethanolic could inhibit bacterial growth. At this concentration, the potential fraction of S. trifasciata ethanolic extract could inhibit the biofilm by 60%. The identification of compounds using gas chromatography-Mass Spectrometry (GC-MS) revealed that Neophytadiene was the main active component in the extract. These compounds have the potential to be used as therapeutic agents in the prevention of bacterial biofilms and virulence-related infectious illnesses


Abdullah, Angelina, Yumna, M., Arbianti, R., Utami, T. S., Hermansyah, H., & Ningsih, S. (2018). Flavonoid isolation and identification of mother-in-law’s tongue leaves (sansevieria trifasciata) and the inhibitory activities to xanthine oxidase enzyme. E3S Web of Conferences, 67.
Anbu, J. S. J., Jayaraj, P., Varatharajan, R., Thomas, J., Jisha, J., & Muthappan, M. (2009). Analgesic and antipyretic effects of Sansevieria trifasciata leaves. African Journal of Traditional, Complementary, and Alternative Medicines : AJTCAM, 6(4), 529–533.
Andhare, R. N., Raut, M. K., & Naik, S. R. (2012). Evaluation of antiallergic and anti-anaphylactic activity of ethanolic extract of Sanseveiria trifasciata leaves (EEST) in rodents. Journal of Ethnopharmacology, 142(3), 627–633.
Arung, E. T., Pasedan, W. F., Kusuma, I. W., Hendra, M., & Supriadi, M. B. (2017). Short communication: Selected medicinal plants in east and North Kalimantan (Indonesia) against Propionibacterium acnes. Biodiversitas, 18(1), 321–325.
Ash, M., Ash, I., & Publishing, G. (1997). Chemotherapy. 385–386.
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79.
Baloyi, I. T., Adeosun, I. J., Yusuf, A. A., & Cosa, S. (2021). In Silico and In Vitro Screening of Antipathogenic Properties of Melianthus comosus (Vahl) against Pseudomonas aeruginosa. In Antibiotics (Vol. 10, Issue 6).
Berame, J., Cuenca, S., Cabilin, D., & Manaban, M. (2017). Preliminary Phytochemical Screening and Toxicity Test of Leaf and Root Parts of the Snake Plant (Sansevieria trifasciata). Journal of Phylogenetics & Evolutionary Biology, 05.
Călina, D., Docea, A. O., Rosu, L., Zlatian, O., Rosu, A. F., Anghelina, F., Rogoveanu, O., Arsene, A. L., Nicolae, A. C., Drăgoi, C. M., Tsiaoussis, J., Tsatsakis, A. M., Spandidos, D. A., Drakoulis, N., & Gofita, E. (2017). Antimicrobial resistance development following surgical site infections. Molecular Medicine Reports, 15(2), 681–688.
Carvalho, A., Santos, A., Barros, L., Calhelha, R., Duenas, M., Santos Buelga, C., & Ferreira, I. (2013). Leaves and decoction of Juglans regia L.: Different performances regarding bioactive compounds and in vitro antioxidant and antitumor effects. Industrial Crops and Products, 2013, 430– 436.
Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.
Dewatisari, W.F., Nugroho, L. H., Retnaningrum, E., & Purwestri, Y. A. (2021). The potency of sansevieria trifasciata and s. Cylindrica leaves extracts as an antibacterial against pseudomonas aeruginosa. Biodiversitas, 22(1).
Dolatabadi, S., Moghadam, H. N., & Mahdavi-Ourtakand, M. (2018). Evaluating the anti-biofilm and antibacterial effects of Juglans regia L. extracts against clinical isolates of Pseudomonas aeruginosa. Microbial Pathogenesis, 118(November 2017), 285–289.
Ginting, E. V., Retnaningrum, E., & Widiasih, D. A. (2021). Antibacterial activity of clove ( Syzygium aromaticum ) and cinnamon ( Cinnamomum burmannii ) essential oil against extended-spectrum β-lactamase - producing bacteria. 14, 2206–2211.
Husain, F. M., Ahmad, I., Al-Thubiani, A. S., Abulreesh, H. H., AlHazza, I. M., & Aqil, F. (2017). Leaf extracts of Mangifera indica L. inhibit quorum sensing - Regulated production of virulence factors and biofilm in test bacteria. Frontiers in Microbiology, 8(APR), 1–12.
Kanazawa, A., Ikeda, T., & Endo, T. (1995). A novel approach to mode of action of cationic biocides: morphological effect on antibacterial activity. The Journal of Applied Bacteriology, 78(1), 55–60.
Kim, H.-S., Lee, S.-H., Byun, Y., & Park, H.-D. (2015). 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Scientific Reports, 5(1), 8656.
Kingsley, J., Chauhan, R., Sinha, P., & Abraham, J. (2013). Screening and Characterization of Antimicrobial Agents from Sanseveria roxburghiana and Sansveria trifasiata. Asian Journal of Plant Sciences, 12, 224–227.
Lu, P.-L., & Morden, C. (2014). Phylogenetic Relationships among Dracaenoid Genera (Asparagaceae: Nolinoideae) Inferred from Chloroplast DNA Loci. Systematic Botany, 39.
Olajuyigbe, O. O., Onibudo, T. E., Coopoosamy, R. M., Ashafa, A. O. T., & Afolayan, A. J. (2018). Bioactive compounds and in vitro antimicrobial activities of ethanol stem bark extract of trilepisium madagascariense DC. International Journal of Pharmacology, 14(7), 901–912.
Özogul, Y., Kuley, E., Akyol, I., Durmuş, M., Ucar, Y., Regenstein, J., & Kosker, A. (2020). Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Bioscience, 36.
Painuli, S., Rai, N., & Kumar, N. (2015). GC-MS analysis of methanolic extract of leaves of Rhododendron campanulatum. International Journal of Pharmacy and Pharmaceutical Sciences, 7(12), 299–303.
Purwestri, Y. A., Kartikasari, N., Putri, S. G., Wilson, W., & Sembiring, L. (2016). Metabolic profiling of endophytic bacteria from Purwoceng (Pimpinella pruatjan Molkend) root and antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. AIP Conference Proceedings, 1744.
Quave, C. L., Plano, L. R. W., Pantuso, T., & Bennett, B. C. (2008). Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 118(3), 418–428.
Quinto, E. J., Caro, I., Villalobos-Delgado, L. H., Mateo, J., De-Mateo-Silleras, B., & Redondo-Del-Río, M. P. (2019). Food Safety through Natural Antimicrobials. Antibiotics (Basel, Switzerland), 8(4).
Retnaningrum, E., & Wilopo, W. (2018). Production and characterization of biosurfactants produced by Pseudomonas aeruginosa B031 isolated from a hydrocarbon phytoremediation field. Biotropia, 25(2), 130–139.
Retnaningrum, E., Yossi, T., Nur’azizah, R., Sapalina, F., & Kulla, P. D. K. (2020). Characterization of a bacteriocin as biopreservative synthesized by indigenous lactic acid bacteria from dadih soya traditional product used in West Sumatra, Indonesia. Biodiversitas, 21(9), 4192–4198.
Sathiya Deepika, M., Thangam, R., Sakthidhasan, P., Arun, S., Sivasubramanian, S., & Thirumurugan, R. (2018). Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control, 90, 282–294.
Stefanovic, O. (2018). Synergistic Activity of Antibiotics and Bioactive Plant Extracts: A Study Against Gram-Positive and Gram-Negative Bacteria.
Teanpaisan, R., Kawsud, P., Pahumunto, N., & Puripattanavong, J. (2017). Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. Journal of Traditional and Complementary Medicine, 7(2), 172–177.
Umoh, O., Edet, V., & Uyoh, V. (2020). Comparative Analysis of the Phytochemical Contents of Dry and Fresh Leaves of Sansevieria trifasciata Prain. 41–47.
Venkata raman, B., La, S., M, P., B, N., Naga Vamsi Krishna, A., & Tm, R. (2012). Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian Journal of Pharmaceutical and Clinical Research, 5.
Yumna, M., Angelina, Abdullah, Arbianti, R., Utami, T. S., & Hermansyah, H. (2018). Effect of mother-in-law’s tongue leaves (Sansevieria trifasciata) extract’s solvent polarity on anti-diabetic activity through in vitro α-glucosidase enzyme inhibition test. E3S Web of Conferences, 67, 0–4.
Zhanel, G. G., Hoban, D. J., & Harding, G. K. (1992). Subinhibitory antimicrobial concentrations: A review of in vitro and in vivo data. The Canadian Journal of Infectious Diseases = Journal Canadien Des Maladies Infectieuses, 3(4), 193–201.
Zhang, L., McEntire, J. C., Newsome, R., & Wang, H. (2012). Antimicrobial Resistance. In Food Microbiology (pp. 19–44).
How to Cite
Dewatisari, W., Nugroho, L. H., Retnaningrum, E., & urwestri, Y. A. P. (2022). Antibacterial and Anti-biofilm- Forming Activity of Secondary Metabolites from Sansevieria trifasciata- Leaves Against Pseudomonas aeruginosa. Indonesian Journal of Pharmacy, 33(1), 100-109.
Research Article