Bioinformatics Analysis Uncovers the Importance of RTK-RAS-PI3K/Akt Regulation by Borneol in Overcoming Breast Cancer Resistance to Tamoxifen

  • Zulfikar Ali Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia.
  • Adam Hermawan Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
Keywords: Breast cancer, Tamoxifen resistance, Borneol, Bioinformatics


Currently, tamoxifen-based hormonal treatment remains the first line for luminal A (estrogen receptor [ER]-positive) subtype breast cancer, with a response of more than 30%. Chemoresistance was induced by the long-term use of tamoxifen therapy. Therefore, to prevent resistance and improve the effectiveness of tamoxifen, combined therapy is required. This study used bioinformatics to identify possible borneol target genes and their mechanism for overcoming tamoxifen resistance in breast cancer cells. We used data from the gene expression omnibus (GEO) collection to find differentially expressed genes (DEGs). The Database for Annotation, Visualization, and Integrated Discovery (DAVID) site, version 6.8, was also used to undertake gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis of the DEGs. The STRING-DB site, version 11.0, was used to predict protein-protein interaction (PPI) study. The PPI analysis findings were visualized using the Cytoscape software, version 3.8.2. The hub gene was further calculated using the CytoHubba plugin. The genomic alterations from the hub gene were evaluated using cBioPortal, version 1.18.1. The potential target genes (PTGs) of borneol compounds are ESR1, FGFR2, STAT3, ERBB4, PRKCA, and RTK-RAS PI3K-Akt signaling as its prospective mechanism to overcome tamoxifen resistance in breast cancer cells. More studies are needed to confirm the potential of borneol to overcome tamoxifen resistance in breast cancer.


Ali, S., Rasool, M., Chaoudhry, H., N Pushparaj, P., Jha, P., Hafiz, A., Mahfooz, M., Abdus Sami, G., Azhar Kamal, M., Bashir, S., Ali, A., Sarwar Jamal, M., 2016. Molecular Mechanisms and Mode of Tamoxifen Resistance in Breast Cancer. Bioinformation 12, 135–139.
Beurel, E., Grieco, S.F., Jope, R.S., 2015. Glycogen Synthase Kinase-3 (GSK3): Regulation, Actions, and Diseases. Pharmacol Ther 148, 114–131
Castellano, E., Downward, J., 2011. Ras Interaction with Pi3k: More than Just Another Effector Pathway. Genes Cancer 2, 261–274.
Chakravarty, G., Moroz, K., Makridakis, N.M., Lloyd, S.A., Galvez, S.E., Canavello, P.R., Lacey, M.R., Agrawal, K., Mondal, D., 2011. Prognostic Significance of Cytoplasmic Sox9 in Invasive Ductal Carcinoma and Metastatic Breast Cancer. Exp Biol Med (Maywood) 236, 145–155
Chen, J., 2016. The Cell-Cycle Arrest and Apoptotic Functions of P53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 6, a026104.
Chin, C.H., Chen, S.H., Wu, H.H., Ho, C.W., Ko, M.T., Lin, C.Y., 2014. Cytohubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Syst Biol 8 Suppl 4, S11.
Clarke, R., Tyson, J.J., Dixon, J.M., 2015. Endocrine Resistance in Breast Cancer – An Overview and Update. Mol Cell Endocrinol 418, 220–234.
Cui, H., Li, X., Li, N., Qi, K., Li, Q., Jin, C., Zhang, Q., Jiang, L., Yang, Y., 2014. Induction of Autophagy by Tongxinluo Through the Mek/Erk Pathway Protects Human Cardiac Microvascular Endothelial Cells from Hypoxia/Reoxygenation Injury. J Cardiovasc Pharmacol 64, 180–190.
Doncheva, N.T., Morris, J.H., Gorodkin, J., Jensen, L.J., 2019. Cytoscape Stringapp: Network Analysis and Visualization of Proteomics Data. J Proteome Res 18, 623–632.
Elias, D., Vever, H., Lænkholm, A.V., Gjerstorff, M.F., Yde, C.W., Lykkesfeldt, A.E., Ditzel, H.J., 2015. Gene Expression Profiling Identifies Fyn as an Important Molecule in Tamoxifen Resistance and a Predictor of Early Recurrence in Patients Treated with Endocrine Therapy. Oncogene 34, 1919–1927.
Fan, W., Chang, J., Fu, P., 2015. Endocrine Therapy Resistance in Breast Cancer: Current Status, Possible Mechanisms and Overcoming Strategies. Future Med Chem 7, 1511–1519.
Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H.H., Haydon, R.C., He, T.C., Ren, G., 2018. Breast Cancer Development and Progression: Risk Factors, Cancer Stem Cells, Signaling Pathways, Genomics, and Molecular Pathogenesis. Genes Dis 5, 77–106.
Gao, J., Zhang, J.Y., Li, Y.H., Ren, F., 2015. Decreased Expression of Sox9 Indicates a Better Prognosis and Inhibits the Growth of Glioma Cells by Inducing Cell Cycle Arrest. Int J Clin Exp Pathol 8, 10130–10138
Hermawan, A., Khumaira, A., Ikawati, M., Putri, H., Jenie, R.I., Angraini, S.M., Muflikhasari, H.A., 2021. Identification of Key Genes of Hesperidin in Inhibition of Breast Cancer Stem Cells by Functional Network Analysis. Comput Biol Chem 90, 107427.
Hermawan, A., Putri, H., Utomo, R.Y., 2020. Comprehensive Bioinformatics Study Reveals Targets and Molecular Mechanism of Hesperetin in Overcoming Breast Cancer Chemoresistance. Mol Divers 24, 933–947.
Hermawan, A., Putri, H., Ikawati, M., 2020. Bioinformatic Analysis Reveals the Molecular Targets of Tangeretin in Overcoming the Resistance of Breast Cancer to Tamoxifen. Gene Rep 21. 100884
Huang, X., Liu, G., Guo, J., Su, Z., 2018. The Pi3k/Akt Pathway in Obesity and Type 2 Diabetes. Int J Biol Sci 14, 1483–1496.
Itoh, S., Saito, T., Hirata, M., Ushita, M., Ikeda, T., Woodgett, J.R., Algül, H., Schmid, R.M., Chung, U.I., Kawaguchi, H., 2012. GSK-3α and GSK-3β ProteinS Are Involved in Early Stages of Chondrocyte Differentiation with Functional Redundancy Through Rela Protein Phosphorylation. J Biol Chem 287, 29227–29236.
Kitagishi, Y., Kobayashi, M., Kikuta, K., Matsuda, S., 2012. Roles of Pi3k/Akt/Gsk3/Mtor Pathway in Cell Signaling of Mental Illnesses. Depress Res Treat 2012, 752563.
Kiu, H., Nicholson, S.E., 2012. Biology and Significance of the Jak/Stat Signalling Pathways. Growth Factors 30, 88–106
Lai, H., Liu, C., Lin, W., Chen, T.F., Hong, A., 2020. Chemosensitization of Doxorubicin Against Lung Cancer by Nature Borneol, Involvement of Trpm8-Regulated Calcium Mobilization (preprint).
Lee, M.C., Chen, Y.K., Hsu, Y.J., Lin, B.R., 2020. Niclosamide Inhibits the Cell Proliferation and Enhances the Responsiveness of Esophageal Cancer Cells to Chemotherapeutic Agents. Oncol Rep 43, 549–561.
Chang, L., Yin, C.-Y., Wu, H.-Y., Tian, B.-B., Zhu, Y., Luo, C.-X., Zhu, D.Y., 2017 (+)-Borneol is neuroprotective against permanent cerebral ischemia in rats by suppressing production of proinflammatory cytokines. J Biomed Res 31, 306–314.
Liu, W.J., Yin, Y.B., Sun, J.Y., Feng, S., Ma, J.K., Fu, X.Y., Hou, Y.J., Yang, M.F., Sun, B.L., Fan, C.D., 2018. Natural Borneol Is a Novel Chemosensitizer That Enhances Temozolomide-Induced Anticancer Efficiency Against Human Glioma by Triggering Mitochondrial Dysfunction and Reactive Oxide Species-Mediated Oxidative Damage. Onco Targets Ther 11, 5429–5439.
Lv, C., Wu, X., Wang, X., Su, J., Zeng, H., Zhao, J., Lin, S., Liu, R., Li, H., Li, X., Zhang, W., 2017. The Gene Expression Profiles in Response to 102 Traditional Chinese Medicine (tcm) Components: A General Template for Research on Tcms. Sci Rep 7, 352.
Ma, R., Xie, Q., Li, H., Guo, X., Wang, J., Li, Y., Ren, M., Gong, D., Gao, T., 2021. L-Borneol Exerted the Neuroprotective Effect by Promoting Angiogenesis Coupled with Neurogenesis via Ang1-Vegf-Bdnf Pathway. Front Pharmacol 12, 641894.
Maruyama, I.N., 2014. Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers. Cells 3, 304–330.
Mendoza, M.C., Er, E.E., Blenis, J., 2011. The Ras-Erk and Pi3k-Mtor Pathways: Cross-Talk and Compensation. Trends Biochem Sci 36, 320–328.
Murwanti, R., Kholifah, E., Sudarmanto, B.S.A., Hermawan, A., 2020. Curcumin and Its Analogue Targeting Β-Catenin and GSK-3β in Wnt Signaling Pathways: in Vitro and in Silico Study. Res. J Pharm Technol 13, 1715.
Nieminen, A.I., Eskelinen, V.M., Haikala, H.M., Tervonen, T.A., Yan, Y., Partanen, J.I., Klefström, J., 2013. Myc-Induced Ampk-Phospho P53 Pathway Activates Bak to Sensitize Mitochondrial Apoptosis. Proc Natl Acad Sci U S A 110, E1839–E1848.
Okat, Z., 2018. Molecular Dynamics of Estrogen Receptors. EJMO.
Panza, A., Pazienza, V., Ripoli, M., Benegiamo, G., Gentile, A., Valvano, M.R., Augello, B., Merla, G., Prattichizzo, C., Tavano, F., Ranieri, E., di Sebastiano, P., Vinciguerra, M., Andriulli, A., Mazzoccoli, G., Piepoli, A., 2013. Interplay Between Sox9, Β-Catenin and PPARγ Activation in Colorectal Cancer. Biochim Biophys Acta 1833, 1853–1865.
Rahmani, M., Aust, M.M., Attkisson, E., Williams, D.C., Ferreira-Gonzalez, A., Grant, S., 2013. Dual Inhibition of Bcl-2 and Bcl-Xl Strikingly Enhances Pi3k Inhibition-Induced Apoptosis in Human Myeloid Leukemia Cells Through a GSK3- and Bim-Dependent Mechanism. Cancer Res 73, 1340–1351.
Rani, A., Stebbing, J., Giamas, G., Murphy, J., 2019. Endocrine Resistance in Hormone Receptor Positive Breast Cancer–From Mechanism to Therapy. Front Endocrinol 10, 245.
Sokolosky, M., Chappell, W.H., Stadelman, K., Abrams, S.L., Davis, N.M., Steelman, L.S., McCubrey, J.A., 2014. Inhibition of GSK-3β Activity Can Result in Drug and Hormonal Resistance and Alter Sensitivity to Targeted Therapy in Mcf-7 Breast Cancer Cells. Cell Cycle 13, 820–833.
Su, J., Lai, H., Chen, J., Li, L., Wong, Y.S., Chen, T., Li, X., 2013. Natural Borneol, a Monoterpenoid Compound, Potentiates Selenocystine-Induced Apoptosis in Human Hepatocellular Carcinoma Cells by Enhancement of Cellular Uptake and Activation of Ros-Mediated Dna Damage. PLOS ONE 8, e63502.
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., Kuhn, M., Bork, P., Jensen, L.J., von Mering, C., 2015. String V10: Protein–Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res 43, D447–D452.
Vainchenker, W., Constantinescu, S.N., 2013. Jak/Stat Signaling in Hematological Malignancies. Oncogene 32, 2601–2613.
Viedma-Rodríguez, R., Baiza-Gutman, L., Salamanca-Gómez, F., Diaz-Zaragoza, M., Martínez-Hernández, G., Ruiz Esparza-Garrido, R.R., Velázquez-Flores, M.A., Arenas-Aranda, D., 2014. Mechanisms Associated with Resistance to Tamoxifen in Estrogen Receptor-Positive Breast Cancer (Review) (review). Oncol Rep 32, 3–15.
Wang, Z., Li, Q., Xia, L., Li, X., Sun, C., Wang, Q., Cai, X., Yang, G., 2020. Borneol Promotes Apoptosis of Human Glioma Cells Through Regulating Hif-1a Expression via Mtorc1/Eif4e Pathway. J Cancer 11, 4810–4822.
World Health Organization, 2019. Cancer. World Health Organization.
Wu, P., Heins, Z.J., Muller, J.T., Katsnelson, L., de Bruijn, I., Abeshouse, A.A., Schultz, N., Fenyö, D., Gao, J., 2019. Integration and Analysis of CPTAC Proteomics Data in the Context of Cancer Genomics in the cBioPortal. Mol Cell Proteomics 18, 1893–1898.
Xue, Y., Lian, W., Zhi, J., Yang, W., Li, Q., Guo, X., Gao, J., Qu, H., Lin, W., Li, Z., Lai, L., Wang, Q., 2019. Hdac5-Mediated Deacetylation and Nuclear Localisation of Sox9 Is Critical for Tamoxifen Resistance in Breast Cancer. Br J Cancer 121, 1039–1049.
Yang, C.B., Pei, W.J., Zhao, J., Cheng, Y.Y., Zheng, X.H., Rong, J.H., 2014. Bornyl Caffeate Induces Apoptosis in Human Breast Cancer Mcf-7 Cells via the Ros- and Jnk-Mediated Pathways. Acta Pharmacol Sin 35, 113–123.
Yang, Y., Yan, X., Xue, J., Zheng, Y., Chen, M., Sun, Z., Liu, T., Wang, C., You, H., Luo, D., 2019. Connexin43 Dephosphorylation at Serine 282 Is Associated with Connexin43-Mediated Cardiomyocyte Apoptosis. Cell Death Differ 26, 1332–1345.
Yang, Z., An, W., Liu, S., Huang, Y., Xie, C., Huang, S., Zheng, X., 2020. Mining of Candidate Genes Involved in the Biosynthesis of Dextrorotatory Borneol in Cinnamomum Burmannii by Transcriptomic Analysis on Three Chemotypes. PeerJ 8, e9311.
Yersal, O., Barutca, S., 2014. Biological Subtypes of Breast Cancer: Prognostic and Therapeutic Implications. World J Clin Oncol 5, 412–424.
Yu, B., Zhong, F.M., Yao, Y., Deng, S.Q., Xu, H.Q., Lu, J.F., Ruan, M., Shen, X.C., 2019. Synergistic Protection of Tetramethylpyrazine Phosphate and Borneol on Brain Microvascular Endothelium Cells Injured by Hypoxia. Am J Transl Res 11, 2168–2180
Yue, J., López, J.M., 2020. Understanding Mapk Signaling Pathways in Apoptosis. Int J Mol Sci 21, 2346.
Zhang, G., Jiang, X., Liu, Y., Hao, X., Wang, Y., Yan, X., Yuan, N., Ma, Y., Ma, M., 2019. Therapeutic Efficiency of an External Chinese Herbal Formula of Mammary Precancerous Lesions by Batman-Tcm Online Bioinformatics Analysis Tool and Experimental Validation. Evid Based Complement Alternat Med 2019, 2795010.
Zhang, X., Xu, F., Liu, L., Feng, L., Wu, X., Shen, Y., Sun, Y., Wu, X., Xu, Q., 2017. (+)-Borneol Improves the Efficacy of Edaravone Against Dss-Induced Colitis by Promoting M2 Macrophages Polarization via Jak2-Stat3 Signaling Pathway. Int Immunopharmacol 53, 1–10.
Zhu, N., Zhang, J., Du, Y., Qin, X., Miao, R., Nan, J., Chen, X., Sun, J., Zhao, R., Zhang, X., Shi, L., Li, X., Lin, Y., Wei, W., Mao, A., Zhang, Z., Stark, G.R., Wang, Y., Yang, J., 2020. Loss of Zip Facilitates Jak2-Stat3 Activation in Tamoxifen-Resistant Breast Cancer. Proc Natl Acad Sci U S A 117, 15047–15054.
Zou, L., Wang, D., Hu, Y., Fu, C., Li, W., Dai, L., Yang, L., Zhang, J., 2017. Drug Resistance Reversal in Ovarian Cancer Cells of Paclitaxel and Borneol Combination Therapy Mediated by Peg-Pamam Nanoparticles. Oncotarget 8, 60453–60468.
How to Cite
Ali, Z., & Hermawan, A. (2022). Bioinformatics Analysis Uncovers the Importance of RTK-RAS-PI3K/Akt Regulation by Borneol in Overcoming Breast Cancer Resistance to Tamoxifen. Indonesian Journal of Pharmacy, 33(1), 135-146.
Research Article