Expression, Microencapsulation of Recombinant Human Epidermal Growth Factor, and Release Study in Gastric Ulcer Representing Condition
Abstract
Recombinant human epidermal growth factor (rhEGF) has been studied and expressed in various expression systems. It has been also commercialized and clinically used, yet limited to topical diseases. However, being naturally expressed in different tissues, the rhEGF is potential to be applied not only for external wound and skin disorders, but also to regenerates internal damaged epidermal cells such found in gastric ulcer. In the recent study, chitosan microparticles were developed to facilitate delivery of the rhEGF and to overcome gastric degradation that majorly interfere protein, particularly rhEGF oral administration. The rhEGF was expressed in E. coli BL21(DE3) and purified using Ni-NTA chromatography. The refolded rhEGF showed proliferation activity on MC7 cells. rhEGF loaded chitosan microparticles were stable in the gastric and specifically released the loaded rhEGF in the high oxidative environment in acidic pH representing gastric ulcer condition.
References
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, Ferreira AJP, Neidhardt FC, Ingraham JL. & Schaechter Mc., 1999. Short Protocols in Molecular Biology – A Compendium of Methods from Current Protocols in Molecular Biology. Wiley. New Jersey.
Berlanga-Acosta J, Fernandez-Montequin J, Valdes-Perez C, Savigne-Gutierrez W, Mendoza-Mari Y, Garcia-Ojalvo A, Falcon-Cama V, del Barco-Herrera DG, Fernandez-Mayola M, Perez-Saad H, Pimentel-Vazquez E, Urquiza-Rodiguez A, Kulikovsky M, Guillen-Nieto G., 2017. Diabetic foot ulcers and epidermal growth factor: revisiting the local delivery route for a succesful outcome. Biomed Res Int: 292359. doi: 10.1155/2017/2923759
Bernkop-Schnürch A, and Dünnhaupt S., 2012. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 81(3): 463-469. Doi: 10.1016/j.3jpb.2012.04.007
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE., 2014. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases, Physiol. Rev.,94(2):329-354.
Bhattamisra SK, Hooi LP, Shyan LP, Chieh LB, Candasamy M, Sahu PS., 2019. Effect of geraniol and clarithromycin combination against gastric ulcers induced by acetic acid and Helicobacter pylori in rats. Pharmacognosy Res.11(4): 356-362
Bodnar RJ., 2011. Epidermal growth factor and epidermal growth factor receptor: The yin and yang in the treatment of cutaneous wounds and cancer. Adv Wound Care, 2(1):24-29. doi: 10.1089/wound.2011.0326
Bowman K, Leong KW., 2006. Chitosan microparticles for oral drug and gene delivery. International Journal of Micromedicine, 1(2): 117-128
Brown TD, Whitehead KA, Mitragotri S., 2020. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater., 5: 127-148. doi: 10.1038/s41578-019-0156-6
Brownsey GJ, Noel TR, Parker R, Ring SG., 2003. The glass transition behavior of the globular protein bovine serum albumin. Biophys. J. 85:3943–50. doi: 10.1016/S0006-3495(03)74808-5.
Deacon MP, Clive JR, Phillip MW, Saul JBT, Martyn CD, SS. (Bob) Davis Stephen EH., 2000. Atomic Force Microscopy of Gastric Mucin and Chitosan Mucoadhesive Systems. Biochemistry Journal, 348: 557-563.
Deng QY, Zhou CR, Luo BH., 2006. Preparation and characterization ofchitosan nanoparticles containing lysozyme. Pharm. Biol. 44: 336-342
Goodsell DS., 2003. The molecular perspective: epidermal growth factor. Oncologist, 8: 496-497. doi: 10.1634/theoncologist.8-5-496
Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL., 2009. Development of new chitosan/carrageenan microparticles for drug delivery applications. J. Biomed. Mater. Res., 5(5): 591-595. doi: 10.1166/jbn.2009.1067
Hoebler C, Lecannu G, Belleville C, Devaux MF, Popineau Y, Barry JL., 2002. Development of an in vitro system simulating bucco-gastric digestion to assess the physical and chemical changes of food. Int. J. Food Sci. Nutr. (2002) 53, 389–402
Huang JQ, Sridhar S, Hunt RH., 2002. Role of Helicobacter pylori infection and non-steroidal aniinflammatory drus in peptic ulcer disease: a meta-analysis, Lancet, 359:14-22
Itoh M, Matsuo Y., 1994. Gascric ulcer treatment with intravenous human epidermal growth factor: a double-blind controlled clinical study, J Gastroenterol Hepatol, 9: Supplement 1:S78-83.
Jachimska B, Wasilewska M, Adamczyk Z., 2008. Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements. Langmuir. 24:6866–72. doi: 10.1021/la800548p.
Jenning JA., 2017. Controlling chitosan degradation properties in vitro and in vivo in Chitosan Based Biomaterials Volume 1, Eds. Jennings JA., Bumgardner, JD. 159-182. Woodhead Publishing Series in Biomaterials: Number 122
Kim K, Wu HG, Jeon SR., 2015. Epidermal growth factor-induced cell death and radiosensitization in epidermal growth factor receptor-overexpressing cancer cell lines. Anticancer Res, 35(1): 245-253.
Konturek JW, Hengst K, Konturek SJ, Domschke W., 1997. Epidermal Growth Factor in Gastric Ulcer Healing by Nocloprost, a Stable Prostaglandin E2 Derivative, Scand J Gastroenterol, 32:10, 980-984. doi: 10.3109/00365529709011213
Kozlova N, Samylenki A, Drobot L, Kietzmann T., 2016. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog J. doi : 10.1002/mc.22267
Kundu P, Das S, Chattopadhyay N., 2019. Managing efficacy and toxicity of drugs: targeted delivery and excretion. Int. J. Pharm. 565: 378-390
Machida T., 1981. A study of intragastric pH in patients with peptic ulcer – with special reference to the clinical significance of basal pH value, Gastroenterol J, 16(5):447-58.
Nurmalasari., 2010. Konstruksi Gen Sintetik EGFsyn PengkodeHuman Epidermal Growth Factor (hEGF) Menggunakan Metode Thermodinamical Balanced Inside-Out (TBIO). Skripsi. Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Indonesia. Jakarta.
Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S., 2002. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains panel. Cell 110:775-787. doi : 10.1016/S0092-8674(02)00963-7
Pahwa R, Saini N, Kumar V, Kohli K., 2012. Chitosan-based gastroetentive floating drug delivery technology: An updated review, Expert Opin Drug Deliv, 9(5): 525-539. doi: 10.1517/17425247.2012.673581
Posselt G, Crabtree JE, Wesser S., 2017. Proteolysis in Helicobacter pilori-induced gastric cancer. Toxins (Basel), 9(4): 134. doi: 10.3390/toxins9040134
Raza A, Hayat U, Bilal M, Iqbal HMN, Wang JY., 2020. Zein-based micro- and micro-constructs and biologically therapeutic cues with multi-functionalities for oral drug delivery systems. J Drug Deliv Sci Technol, 58, 101818.
Sriwidodo, Subroto T, Maksum IP, Subarnas A, Kesumawardhany B, Lestari DMDD, Umar AK., 2020. Preparation and optimization of chitosan-hEGF micropartice using ionic gelation method stabilized by polyethyene glycol (PEG) for wound healing therapy. Int. J. Pharm. Sci. Res. doi: 10.26452/ijrps.v11i1.1962
Suzuki H, Nishizawa T, Tsugawa H, Mogami S, Hibi T., 2012. Roles of oxidative stress in stomach disorders. J Clin Biochem Nutr, 50(1): 35-39. doi: 10.3164/jcbn.11-115SR
Syam AF, Sakidin M, Wanandi SI, Rani AA., 2009. Molecular Mechanism of Healing Process of Peptic Ulcer. Acta Medicine of Indonesia, 41(2):95-98
Tarnawaski A., 2000. Molecular mechanism of ulcer healing, Drug News Perspect, 13(3):158-168
Triwulandari E, Fahmiati S, Sampora Y, Meliana Y., 2018. Effect of polyanions variation on the particle size of chitosan nanoparticle prepared by ionic gelation method. AIP Conference Proceedings. 2024(1): 020028. doi: 10.1063/1.5064314
Thorne RG, Hrabetova S, Nicholso C., 2004. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J. Neurophysiol, 92: 3471
Wong WKR, Kwong KWY., 2016. Application of recombinant human epidermal growth factor to effective treatment of scalds. JAPLR, 3(1): 00045. doi: 10.15406/japlr.2016.03.00045
Yang W, Fu J, Wang T, He N., 2009. Chitosan/sodium tripolyphosphate microparticles: Preparation, characterization and application as drug carrier. J. Biomed. Nanotechnol, 5(5): 591-595. doi: 10.1166/jbn.2009.1067
Zeng X and Ruckenstein E., 1998. Cross-linked macroporous chitosan anion-exchange membranes for protein separation. J. Membr. Sci, 148(2): 195–205.
Zhang P, Liu C., 2020. Enhancement of skin wound healing by rhEGF-loaded carboxymethyl chitosan microparticles. Polymers. 12(7): 1612. doi: 10.3390/polym12071612
Zheng T, Cherubin P, Cilenti L, Teter K, Huo Q., 2016. A simple and fast method to study the hydrodynamic size difference of protein disulfide isomerase in oxidized and reduced form using gold microparticles and dynamic light scattering. Analyst. 141: 934-938 doi: 10.1039/c5an02248g.