Effectiveness Of Black Soldier Fly Larvae Oil Ointment On The Healing Process Of Incision Wounds In Mice
BSF Larvae Oil Oinment On The Healing Process
Abstract
Black soldier fly (BSF) larvae contain proteins and fatty acids that have significant potential in enhancing the wound healing process. However, the application of BSF larvae oil in the form of a wound ointment has not been extensively explored. Therefore, this study aimed to determine the effect of BSF larvae oil ointment application on the wound healing process (wound morphology, skin histology, and modulation of leukocyte components) in an incision wound model. This experimental study used a completely randomized design with Balb/c mice as test subjects. The test subjects were divided into six different groups: no treatment (NT), gentamicin ointment (GTC), ointment base (OB), and BSF larvae oil ointment 5% (BSFO 5%), BSF larvae oil ointment 10% (BSFO 10%), and BSF larvae oil ointment 15% (BSFO 15%). The ointment was applied twice a day at 0.15 g per application, and wound healing parameters were observed over 14 days. The results showed that BSFO 5% significantly improved wound morphology, reduced wound length, and enhanced histological components of the wound compared to the control and all other treatments. Additionally, BSFO 5% was able to normalize leukocyte levels after 14 days. Furthermore, BSFO 15% was proven effective in modulating lymphocyte levels compared to other groups. These findings emphasize the potential use of BSF larvae oil ointment in enhancing wound healing and regulating immune responses by increasing lymphocyte levels, and open new opportunities for future technology development in wound therapy and care.
References
Alfaris, M.Y. & Mansyur, M. (2018). Pengaruh pemberian sarang telur laba-laba (spider silk protein) Menemerus Bivittatus secara topikal terhadap penyembuhan luka insisi pada fase inflamasi tikus putih jantan (Rattus norvegicus) strain wistar. Jurnal Ilmiah Kedokteran Wijaya Kusuma. 6(1), 29-33. http://dx.doi.org/10.30742/jikw.v6i1.323
DeLeon, P.K.Y., Barker, T.H., Lindsey, M.L. (2020). Fibroblasts: the arbiters of extracellular matrix remodeling. Matrix Biology. 91–92, 1–7. https://doi.org/10.1016/j.matbio.2020.05.006
Deng, T., Gao, D., Song, X., & et al. (2023). A natural biological adhesive from snail mucus for wound repair. Nature Communications. 14, 396.
Elzayat, E. M., Auda, S.H., Alanazi, F.K., & Al-Agamy, M.H. (2018). Evaluation of wound healing activ- ity of henna, pomegranate and myrrh herbal ointment blend. Saudi Pharmaceutical Journal. 26(5), 733-738. https://doi.org/10.1016/j.jsps.2018.02.016
Peşin, S.I., Koca, U., Küpeli A.E., Yılmazer, D., & Alper, M. (2011). Assessment of wound healing activity of the aqueous extracts of Colutea cilicica Boiss. & Bal. fruits and leaves. Evidence‐Based Complementary and Alternative Medicine, 2011(1), 758191. https://doi.org/10.1093/ecam/nep190
Fadilaturahmah, F., Rahayu, R., Santoso, P. (2023). Anti-inflammatory effects of velvet bean (Mucuna pruriens L.(DC.), Fabaceae) leaf ethanolic extract against carrageenan in male mice. Journal of Research in Pharmacy. 27(4). http://doi.org/10.29228/jrp.438
Fadillah, M., & Santoso, P. (2019). The sirangak (Cyanthillium cinereum; asteraceae) oil accelerates sliced-wound healing by enhanching the hematological endurance in male albino mice. Journal of Physics: Conference Series. 1317(1:012080). IOP Publishing. http://doi.org/10.1088/1742-6596/1317/1/012080
Franco, A., Scieuzo, C., Salvia, R., Petrone, A.M., Tafi, E., & et al. (2021). Lipids from Hermetia illucens, an Innovative and Sustainable Source. Sustainability. 13(18), 10198. https://doi.org/10.3390/su131810198
Harfiani, E., Nugraha, Y., Aprilia, C.A., Makkiyah, F.A., Puspita, R., Kharisma, V.D., Zainul, R., & et al. (2022). The phytochemical and pharmacological activity of extract Kirinyuh (Chromolaena odorata L.) leaves: A Review. Pharmacognosy Journal. 14(5). http://doi.org/10.5530/pj.2022.14.139
Ibrahim, N.I., Wong, S.K., Mohamed, I.N., Mohamed, N., Chin, K.Y., Ima-Nirvana, S., & Shuid, A.N. (2018). Wound healing properties of selected natural products. International Journal of Environmental Research and Public Health. 15,2360. http://doi.org/10.3390/ijerph15112360.
Iyyam, P.S., Palsamy, P., Subramanian, S., & Kandaswamy, M. (2010). Wound healing properties of Indian propolis studied on excision wound-induced rats. Pharmaceutical Biology. 48(11), 1198-1206. http://doi.org/10.3109/13880200903578754
Jacob, A., Parolia, A., Pau, A., & Davamani, A.F. (2015). The effects of Malaysian propolis and Brazilian red propolis on connective tissue fibroblasts in the wound healing process. BMC complementary and alternative medicine. 15: 1-10. http://doi.org/10.1186/s12906-015-0814-1
Jaiswal, S., Singh, S.V., Singh, B., & Singh, H.N. (2004). Plants used for tissue healing of animals. Natural product radiance. 3(4), 284-292.
Kim, K.A., Gu, W., Lee, I.A., Joh, E.H., & Kim, D.H. (2012). High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLOS ONE. 7(10). http://doi.org/10.1371/journal.pone.0047713
Komprda, T., Sladek, Z., Sevcikova, Z., Svehlova, V., Wijacki, J., Guran, R., ... & Buchtova, M. (2020). Comparison of dietary oils with different polyunsaturated fatty acid n-3 and n-6 content in the rat model of cutaneous wound healing. International Journal of Molecular Sciences. 21(21), 7911. http://doi.org/10.3390/ijms21217911
Kumar, V., Abbas, A.K., & Fausto, N. (2013). Robbins buku ajar patologi. Edisi 7. Jakarta: EGC. 35-66.
Li, S., Ji, H., Zhang, B., Tian, J., Zhou, J., & Yu, H. (2016). Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture. 465, 43–52. https://doi.org/10.1016/j.aquaculture.2016.08.020
Lindley, L.E., Stojadinovic, O., Pastar, I., & Tomic, C.M. (2016). Biology and biomarkers for wound healing. Plastic and Reconstructive Surgery. 138, 18S–28S. http://doi.org/10.1097/PRS.0000000000002682
Man, E., & Hoskins, C. (2020). Towards advanced wound regeneration. European Journal of Pharmaceutical Sciences. 149, 105360. https://doi.org/10.1016/j.ejps.2020.105360
Mangunsong, S., & Marsela, L. (2021). Effects of methanol extract of maggot (H.illucens) on open wound healing in rats (Rattus novergicus). Jurnal Kesehatan Farmasi. 3(2), 99 -104.
Milasari, M., Jamaluddin, A.W., & Adikurniawan, Y.M. (2019). Pengaruh Pemberian Salep Ekstrak Kunyit Kuning (Curcuma longa Linn) terhadap Penyembuhan Luka Sayat pada Tikus Putih (Rattus norvegicus). Jurnal Ilmiah Ibnu Sina. 4(1), 186-202. http://doi.org/10.36387/jiis.v4i1.268
Moretta, A., Salvia, R., Scieuzo, C., Di Somma, A., Vogel, H., Pucci, P., & Falabella, P. (2020). A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Scientific reports. 10(1), 16875. http://doi.org/10.1038/s41598-020-74017-9
Mulisa, E., Asres, K., & Engidawork, E. (2015). Evaluation of wound healing and anti-inflammatory activity of the rhizomes of Rumex abyssinicus J.(Polygonaceae) in mice. BMC Complementary and Alternative Medicine. 15, 341. http://doi.org/10.1186/s12906-015-0878-y
Pakyari, M., Farrokhi, A., Maharlooei, M.K., & Ghahary, A. (2013). Critical role of transforming growth factor beta in different phases of wound healing. Advances in Wound Care. 2(5), 215–224. http://doi.org/10.1089/wound.2012.0406Abstract
Pereira, L.M., Hatanaka, E., Martins, E.F., Oliveira, F., Liberti, E.A., Farsky, S.H., Pithon‐Curi, T.C., & et al. (2008). Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease. 26(2), 197-204. http://doi.org/10.1002/cbf.1432
Rahayu, R., Rahmawati, R., Mairawita, M., Devianto, D., & Putra, R.E. (2023). Performance of tropical fruit wastes as oviposition attractants and growing substrates in rearing black soldier fly (Hermetia illucens). International Journal of Agriculture and Biology. 30(3), 221‒228. http://doi.org/10.17957/IJAB/15.2079
Rahayu, R., Utari, S.D., Santoso, P. (2024). Effectiveness of Black Soldier Fly (Hermetia illucens) Prepupa Oil Emulgel for Burn Wound Recovery. Tropical Journal of Natural Product Research. 8(1), 6589-6593. https://doi.org/10.26538/tjnpr/v8i3.17
Rittié, L. (2016). Cellular mechanisms of skin repair in humans and other mammals. Journal of Cell Communication and Signaling. http://doi.org/103–120. 10.1007/s12079-016-0330-1
Sen, C.K., Gordillo, G.M., Roy S, & et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair and Regeneration. 2009. 17(6):763–771. http://doi.org/10.1111/j.1524-475X.2009.00543.x
Shelomi, M. (2020). Nutrient composition of black soldier fly (Hermetia illucens). African edible insects as alternative source of food, oil, protein and bioactive components. 195-212. https://doi.org/10.1007/978-3-030-32952-5_13
Shivhare, Y., Singour, P.K., Patil, U.K., & Pawar, R.S. (2010). Wound healing potential of methanolic extract of Trichosanthes dioica Roxb (fruits) in rats. Journal of Ethnopharmacology. 127(3), 614-619. http://doi.org/10.1016/j.jep.2009.12.015
Shukla, S.K., Sharma, A.K., Gupta, V., & Yashavarddhan, M. (2019). Pharmacological control of inflammation in wound healing. Journal of tissue viability. 28, 218–222. http://doi.org/10.1016/j.jtv.2019.09.002
Skendros, P., Mitroulis, I., & Ritis, K. (2018). Autophagy in neu- trophils: from Granulopoiesis to neutrophil extracellular traps. Frontiers in Cell and Developmental Biology. 6:109. http://doi.org/10.3389/fcell.2018.00109
Strbo, N., Yin, N., & Stojadinovic, S.O. (2014). Innate and Adaptive Immune Responses in Wound Epithelialization. Advances in Wound Care. 3(7), 492–501. http://doi.org/10.1089/wound.2012.0435
Tottoli, E.M., Dorati, R., Genta, I., & et al. (2020). Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 12, 735. http://doi.org/10.3390/pharmaceutics12080735
Tracy, L.E., Minasian, R.A., & Caterson, E.J. (2016). Extracellular matrix and dermal fibroblast function in the healing wound. Advances in Wound Care. 5, 119–136. http://doi.org/10.1089/wound.2014.0561
Triunfo, M., Tafi, E., Guarnieri, A., Scieuzo, C., Hahn, T., Zibek, S., & et al. (2021). Insect chitin-based nanomaterials for innovative cosmetics and cosmeceuticals. Cosmetics. 8,40. https://doi.org/10.1038/s41598-022-10423-5
Upadhyay, A., Chattopadhyay, P., Goyary, D., Mazumder, P.M., & Veer, V. (2013). Eleutherine indica L. accelerates in vivo cutaneous wound healing by stimulating Smad-mediated collagen production. Journal of Ethnopharmacology. 146, 490–494. http://doi.org/10.1016/j.jep.2013.01.012
UPTD RSH Sumbar. (2023). Nilai Hematologi Mencit. Dinas Peternakan dan Kesehatan Hewan Sumatera Barat. Padang.
Stupin, V., Manturova, N., Silina, E., Litvitskiy, P., Vasin, V., Artyushkova, E., Ivanov, A., Gladchenko, M., & Aliev, S. (2020). The Effect of Inflammation on the Healing Process of Acute Skin Wounds Under the Treatment of Wounds with Injections in Rats. Journal of Experimental Pharmacology. 12: 409-422. http://doi.org/10.2147/JEP.S275791
Wang, Y.S., & Shelomi, M. (2017). Review Of Black Soldier Fly (Hermetia illucens) As Animal Feed And Human Food. Foods. 6: 91. http://doi.org/10.3390/foods6100091
Zulkifli, N.F.N.M., Seok-Kian, A.Y., Seng, L.L., Mustafa, S., Kim, Y.S., & Shapawi, R. (2022). Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLoS ONE. 17(2), e0263924. http://doi.org/10.1371/journal.pone.0263924