The Use of Inlacin in Type 2 Diabetes Mellitus Management in Indonesia: A Cost-Effectiveness Analysis of Real-World Evidence

  • Didik Setiawan Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto
  • Raymond R Tjandrawinata
  • Lianawati
  • Galar Sigit Prasuma
  • Andi Nurul Annisa
  • Sidartawan Soegondo
Keywords: Cost-Effectiveness Analysis, Diabetes, Incremental Cost-Effectiveness Ratio, Inlacin, Quality-Adjusted Life Years

Abstract

Background: Diabetes has a significant clinical and economic impact to the society. Inlacin (DLBS3233 bioactive fraction) is a phytopharmaceutical for diabetic patients that can be used as an additional therapy for maintenance purposes. Therefore, Cost-Effectiveness Analysis (CEA) for Inlacin needs to be done to provide an overview of its potential.

Purpose: Aims of this study was to define the cost-effectiveness of phytopharmaceuticals on type 2 diabetes mellitus management in Indonesia.

Methodology: This study was performed using societal perspectives with observational-based cost-effectiveness analysis.The clinical and economic data were retrospectively collected (2007-2022) from a total of 137 participants, of whom 66 were Inlacin Group and 71 were Non-Inlacin Group. The clinical data consisted of HbA1c level, effectiveness, utility, and Visual Analogue Score (VAS), while the economic data consisted of Direct Medical Cost, Direct non-Medical Cost, and Indirect Cost. The incremental cost-effectiveness ratio (ICER) per quality-adjusted life years (QALYs) gained was estimated to determine the cost-effectiveness. Deterministic sensitivity analysis was conducted to assess the impact of parameter uncertainty.

Results: In the base case, inlacin provided a more economic and more effective treatment than non-inlacin with a total cost of IDR 6,837,195 (USD 434.42 ) vs IDR 7,870,056 (USD 5004.17) and a total QALYs of 0.490 vs 0.464. The ICER of IDR 39,535,349 (USD 25,259.62 ) is considered cost effective according to the willingness to pay threshold (2021 3x Indonesian GDP is Rp.201,504,163 = USD 12,813.45). The most influential drivers of cost-effectiveness in deterministic sensitivity analysis were the changes of the total cost of Inlacin, the price of medicine on non-Inlacin group, and the direct medical cost of non-Inlacin group.

Conclusions: Based on the current price in Indonesia, inlacin can be considered a cost-effective option, although this depends heavily on the willingness to pay threshold. Further Markov Modeling studies with inlacin are needed to inform the decision-making process.

References

1. Butt, M. D. et al. Cost of Illness Analysis of Type 2 Diabetes Mellitus: The Findings from a Lower-Middle Income Country. Int. J. Environ. Res. Public Health 19, (2022).
2. Adamjee, E. & Harerimana, J. de D. Estimating the Economic Burden of Diabetes Mellitus in Kenya: a Cost of Illness Study. Eur. Sci. Journal, ESJ 18, 104 (2022).
3. Miller, R. E. & Cote, M. C. The Faces of Innovation : Meeting the Challenge of Diabetes. SSRN Electron. J. (2016) doi:10.2139/ssrn.1106740.
4. Alzaid, A., Ladrón de Guevara, P., Beillat, M., Lehner Martin, V. & Atanasov, P. Burden of Disease and Costs Associated with Type 2 Diabetes in Emerging and Established Markets: Systematic Review Analyses. Expert Rev. Pharmacoeconomics Outcomes Res. 21, 1–14 (2020).
5. IDF. International Diabetes Federation Diabetes Atlas 10th edition. International Diabetes Federation vol. 10th editi (2021).
6. Oh, S. H., Ku, H. & Park, K. S. Prevalence and Socioeconomic Burden of Diabetes Mellitus in South Korean Adults: a Population-Based Study Using Administrative Data. BMC Public Health 21, 1–13 (2021).
7. Ganasegeran, K. et al. A Systematic Review of the Economic Burden of Type 2 Diabetes in Malaysia. Int. J. Environ. Res. Public Health 17, 1–23 (2020).
8. Hnoosh, A., Babineaux, S. M., Piras de Oliveira, C., McDonell, A. & Vega-Hernandez, G. Direct Costs of Type 2 Diabetes from the Brazilian Public Health Care Sector Perspective. Value Heal. 16, A689 (2013).
9. Saric T, Benkovic V, Poljicanin T, et al. Cost of Diabetes in Croatia: Impact of Complications on the Costs of Type II Diabetes. Value Heal. 14, A477 (2011).
10. Chatzitheofilou, I., Babineaux, S. M., Ramírez-Gámez, J., McDonell, A. & Vega-Hernandez, G. Direct Costs of Type 2 Diabetes in Mexico from the Public Health Care Sector Perspective. Value Heal. 16, A688–A689 (2013).
11. Hex, N., Bartlett, C., Wright, D., Taylor, M. & Varley, D. Estimating the Current and Future Costs of Type1 and Type2 Diabetes in the UK, Including Direct Health Costs and Indirect Societal and Productivity Costs. Diabet. Med. 29, 855–862 (2012).
12. Finkelstein, E. A., Chay, J. & Bajpai, S. The Economic Burden of Self-Reported and Undiagnosed Cardiovascular Diseases and Diabetes on Indonesian Households. PLoS One 9, (2014).
13. Kristina, S. A. R. I., Endarti, D. W. I., Andayani, T. R. I. M. & Widayanti, A. W. Direct and Indirect Cost of Diabetes Mellitus in Indonesia: A Prevalence Based Study with Human Capital Approach. Int. J. Pharm. Res. 13, (2020).
14. Rocha, L. V., Macdonald, I., Alssema, M. & Færch, K. The Use and Effectiveness of Selected Alternative Markers for Insulin Sensitivity and Secretion Compared with Gold Standard Markers in Dietary Intervention Studies in Individuals without Diabetes: Results of a Systematic Review. Nutrients 14, (2022).
15. Hume, A. L., Osundolire, S., Mbrah, A. K., Nunes, A. P. & Lapane, K. L. Antihyperglycemic Drug Use in Long-Stay Nursing Home Residents with Diabetes Mellitus. HHS Public Access 8, 10–19 (2022).
16. Pratama, S., Lauren, B. C. & Wisnu, W. The Efficacy of Vitamin B12 Supplementation for Treating Vitamin B12 Deficiency and Peripheral Neuropathy in Metformin-Treated Type 2 Diabetes Mellitus Patients: A Systematic Review. Diabetes Metab. Syndr. Clin. Res. Rev. 16, 102634 (2022).
17. Karagiannis, T. et al. Management of Type 2 Diabetes with the Dual GIP/GLP-1 Receptor Agonist Tirzepatide: a Systematic Review and Meta-Analysis. Diabetologia 65, 1251–1261 (2022).
18. Lv, W., Wang, X., Xu, Q. & Lu, W. Mechanisms and Characteristics of Sulfonylureas and Glinides. Curr. Top. Med. Chem. 20, 37–56 (2019).
19. Julie S. Eggleton, I. J. Thiazolidinediones. NCBI Bookshelf (StatPearls Publishing LLC, 2020).
20. Singh, A. K., Jatwa, R., Purohit, A. & Ram, H. Synthetic and phytocompounds based dipeptidyl peptidase-IV (DPP-IV) inhibitors for therapeutics of diabetes. J. Asian Nat. Prod. Res. 19, 1036–1045 (2017).
21. Gilbert, M. P. & Pratley, R. E. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Front. Endocrinol. (Lausanne). 11, 1–13 (2020).
22. Garcia-Ropero, A., Badimon, J. J. & Santos-Gallego, C. G. The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opin. Drug Metab. Toxicol. 14, 1287–1302 (2018).
23. Drucker, D. J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 27, 740–756 (2018).
24. Fiagbe, J. et al. Prevalence of Controlled and Uncontrolled Diabetes Mellitus and Associated Factors of Controlled Diabetes among Diabetic Adults in the Hohoe Municipality of Ghana. Diabetes Manag. 7, 343–354 (2017).
25. Najafipour, H. et al. Prevalence and Incidence Rate of Diabetes, Pre-diabetes, Uncontrolled Diabetes, and Their Predictors in the Adult Population in Southeastern Iran: Findings From KERCADR Study. Front. Public Heal. 9, 1–12 (2021).
26. Hale, D. E. & Weinzimer, S. A. Type 2 Diabetes Mellitus in Children and Adolescents. Pediatr. Endocrinol. Requisites 19–35 (2018) doi:10.1016/B978-0-323-01825-8.50031-4.
27. Syahid, Z. M. Faktor yang Berhubungan dengan Kepatuhan Pengobatan Diabetes Mellitus. J. Ilm. Kesehat. Sandi Husada 10, 147–155 (2021).
28. Rahem, A. Profil Pengelolaan dan Ketersediaan Obat Anti Diabetes Oral di Puskesmas. J. Farm. Dan Ilmu Kefarmasian Indones. 4, 74 (2019).
29. Miller, B. R., Nguyen, H., Hu, C. J. H., Lin, C. & Nguyen, Q. T. New and Emerging Drugs and Targets for Type 2 Diabetes: Reviewing the Evidence. Am. Heal. Drug Benefits 7, 452–461 (2014).
30. Hakim, S., Chowdhury, M. A. B., Ahmed, N. U. & Uddin, M. J. The Availability of Essential Medicines for Diabetes at Health Facilities in Bangladesh: Evidence from 2014 and 2017 National Surveys. BMC Health Serv. Res. 22, 1–11 (2022).
31. Lin, Y. K. et al. Accessibility and Openness to Diabetes Management Support with Mobile Phones: Survey Study of People with Type 1 Diabetes Using Advanced Diabetes Technologies. JMIR Diabetes 7, 1–10 (2022).
32. H. M. S. Khan. Evidence-Based Study of Side Effects of Drugs Used in the Treatment of Diabetes Mellitus. African J. Microbiol. Res. 6, (2012).
33. Alqarni, A. M., Alrahbeni, T., Al Qarni, A. & Al Qarni, H. M. Adherence to diabetes medication among diabetic patients in the Bisha governorate of Saudi Arabia – a cross-sectional survey. Patient Prefer. Adherence 13, 63–71 (2019).
34. Ewen, M., Zweekhorst, M., Regeer, B. & Laing, R. Baseline assessment of WHO’s target for both availability and affordability of essential medicines to treat non-communicable diseases. PLoS One 12, 1–13 (2017).
35. Cunningham, D. et al. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. N. Engl. J. Med. 355, 11–20 (2006).
36. Liu, Y. C. et al. Does long-term use of antidiabetic drugs changes cancer risk? Med. (United States) 98, (2019).
37. Tjandrawinata, R., Wulan, Nailufar, F., Sinambela & Tandrasasmita, O. Glucose-lowering effect of DLBS3233 is mediated through phosphorylation of tyrosine and upregulation of PPARγ and GLUT4 expression. Int. J. Gen. Med. 1, 345 (2011).
38. Nailufar, F., Tandrasasmita, O. M. & Tjandrawinata, R. R. DLBS3233 increases glucose uptake by mediating upregulation of PPARγ and PPARδ expression. Biomed. Prev. Nutr. 1, 71–78 (2011).
39. Manaf, A., Tjandrawinata, R. R. & Malinda, D. Insulin Sensitizer in Prediabetes: a Clinical Study with DLBS3233, a Combined Bioactive Fraction of Cinnamomum Burmanii and Lagerstroemia Speciosa. Dovepress 10, 1279–1289 (2016).
40. Tjandrawinata, R. R., Suastika, K. & Nofiarny, D. DLBS3233 Extract, a Novel Insulin Sensitizer with Negligible Risk of Hypoglycemia: A Phase-I Study. Int. J. Diabetes Metab. 20, 13–20 (2012).
41. Tjokroprawiro, A., Murtiwi, S. & Tjandrawinata, R. R. DLBS3233, a Combined Bioactive Fraction of Cinnamomum Burmanii and Lagerstroemia Speciosa, in Type-2 Diabetes Mellitus Patients Inadequately Controlled by Metformin and other Oral Antidiabetic Agents. J. Complement. Integr. Med. 13, 413–420 (2016).
42. Emily Eyth; Roopa Naik. Hemoglobin A1C - StatPearls - NCBI Bookshelf. 1–5 at https://www.ncbi.nlm.nih.gov/books/NBK549816/ (2022).
43. Tripathy, S. et al. Validation of the euroqol five-dimensions - Three-level quality of life instrument in a classical Indian language (Odia) and its use to assess quality of life and health status of cancer patients in Eastern India. Indian Journal of Palliative Care vol. 21 282–288 at https://doi.org/10.4103/0973-1075.164896 (2015).
44. Xie, F., Pullenayegum, E. & Gaebel, K. A Time Trade-off-derived Value Set of the EQ-5D-5L for Canada. Med. Care 54, 98–105 (2016).
45. Poder, T. G. & Carrier, N. Predicting EQ-5D-5L Utility Scores from the Oswestry Disability Index and Roland-Morris Disability Questionnaire for Low Back Pain. Expert Rev. Pharmacoeconomics Outcomes Res. 21, 105–110 (2021).
46. Tondok, S. B., Watu, E. & Wahyuni, W. Validitas instrumen European Qualitiy of Life (EQ-5D-5L) Versi Indonesia untuk menilai kualitas hidup penderita tuberkulosis. Holistik J. Kesehat. 15, 267–273 (2021).
47. Kautzky-willer, A. & Harreiter, J. Sex and gender differences in therapy of type 2 diabetes. Diabetes Res. Clin. Pract. (2017) doi:10.1016/j.diabres.2017.07.012.
48. Zimmermann, A. et al. Gender-specific Effects of Treatment with Lifestyle , Metformin or Sulfonylurea on Glycemic Control and Body Weight : A German Multicenter Analysis on 9 108 Patients. Eff. Gend. Diabetes Treat. 4–8 (2015).
49. Alam, S. et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. (Lausanne). 13, (2022).
50. Li, G. Q. et al. Herbal Medicines for the Management of Diabetes. Adv. Exp. Med. Biol. 771, 396–413 (2013).
Published
2025-02-05
How to Cite
Setiawan, D., Tjandrawinata, R. R., Lianawati, Galar Sigit Prasuma, Andi Nurul Annisa, & Sidartawan Soegondo. (2025). The Use of Inlacin in Type 2 Diabetes Mellitus Management in Indonesia: A Cost-Effectiveness Analysis of Real-World Evidence. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.12803
Section
Research Article