An integrated in silico-in vitro-in vivo approach for pharmacokinetic studies of andrographolide using standardized aqueous extract of Andrographis paniculata (Burm.f.) Wall. ex Nees
Abstract
Andrographis paniculata is a herbal plant that has been used traditionally for decades to treat a wide range of diseases. To this date, no research on the integration of in silico, in vitro, and in vivo pharmacokinetics (PK) has been documented on andrographolide (AG), the primary bioactive compound in A. paniculata. In this study, we employed an in silico approach to predict the physicochemical properties, metabolism, and toxicity of AG. PK properties were validated using in vitro assays and further tested in Wistar rats. Based on in silico prediction, AG demonstrated to be a soluble, permeant, and lipophilic drug. AG was regarded as a non-mutagenic and non-carcinogenic drug with a low risk of oral absorption. In vitro assays showed that AG was stable at all pH levels tested, had a high equilibrium solubility and moderately stable in the mouse plasma. AG was also permeant across the Caco-2 monolayer with Papp values of 9.627 × 10−6 cm/s (apical) and 18.1 × 10−6 cm/s (basolateral). It had a stable metabolism in the liver microsomes and did not have any inhibitory effects on the enzymes CYP2C8, CYP2C19, CYP2D6, or CYP3A4 (MDZ). Based on in vivo results, the volume of distribution and clearance were both high, with a short elimination half-life (0.17 ± 0.0 h) contributing to the low oral bioavailability (~2%). Rapid oral absorption was shown with Tmax of 0.25 h. Our data revealed promising drug-like properties of AG, and its pharmacokinetics profiles support its potential in developing andrographolide-based products from natural resources.
References
Abubakar, A.R., Haque, M. (2020). Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of Pharmacy and Bioallied Sciences, 12, 1-10. doi.org/10.4103/jpbs.JPBS_175_19
Al Harthi, S.S., Mavazhe, A., Al Mahroqi, H., Khan, S.A. (2015). Quantification of phenolic compounds, evaluation of physicochemical properties and antioxidant activity of four date (Phoenix dactylifera L.) varieties of Oman. Journal of Taibah University Medical Sciences, 10, 346-352.
Bae, I.Y., Choi, M.S., Ji, Y.S., Yoo, S.K., Kim, K., Yoo, H.H. (2020). Species Differences in Stereoselective Pharmacokinetics of HSG4112, A New Anti-Obesity Agent. Pharmaceutics, 12, 127. doi.org/10.3390/pharmaceutics12020127
Bayazid, A.B., Jang, Y.A. (2021). The Role of Andrographolide on Skin Inflammations and Modulation of Skin Barrier Functions in Human Keratinocyte. Biotechnology and Bioprocess Engineering, 26, 804–813. doi.org/10.1007/s12257-020-0289-x
Bera, R., Ahmed, S.K., Sarkar, L., Sen, T., Karmakar, S. (2013). Pharmacokinetic analysis and tissue distribution of andrographolide in rat by a validated LC-MS/MS method. Pharmaceutical Biology, 52, 321–329.
Burgos, R.A., Caballeroa, E.E., Sáncheza, N.S. et al, (1997). Testicular toxicity assesment of Andrographis paniculata dried extract in rats. Journal of Ethnopharmacology, 58, 219-24.
Ciampi, E., Uribe-San-Martin, R., Cárcamo, C., Cruz, J.P., Reyes, A., Reyes, D. et al. (2020). Efficacy of andrographolide in not active progressive multiple sclerosis: a prospective exploratory double-blind, parallel-group, randomized, placebo-controlled trial. BMC Neurology, 20, 173. doi.org/10.1186/s12883-020-01745-w
Dunnington, K., Benrimoh, N., Brandquist, C., Cardillo-Marricco, N., Spirito, M.D., Grenier, J. (2018). Application of Pharmacokinetics in Early Drug Development. In (Ed.), Pharmacokinetics and Adverse Effects of Drugs - Mechanisms and Risks Factors. IntechOpen doi.org/10.5772/intechopen.74189
El-Saadi, M.W., Williams-Hart, T., Salvatore, B.A., Mahdavian, E. (2015). Use of in-silico assays to characterize the ADMET profile and identify potential therapeutic targets of fusarochromanone, a novel anti-cancer agent. In Silico Pharmacology, 3, 6. doi:10.1186/s40203-015-0010-5
Gong, P., Zhang, W., Zou, C., Han, S,. Tian, Q., Wang, J. et al. (2022). Andrographolide Attenuates Blood-Brain Barrier Disruption, Neuronal Apoptosis, and Oxidative Stress Through Activation of Nrf2/HO-1 Signalling Pathway in Subarachnoid Hemorrhage. Neurotoxicity Research, 40, 508–519. doi.org/10.1007/s12640-022-00486-7
Guo, B.J., Liu, Z., Ding, M.Y., Li, F., Jing, M., Xu, L.P. et al. (2019). Andrographolide derivative ameliorates dextran sulfate sodium-induced experimental colitis in mice. Biochemical Pharmacology, 163, 416-24.
Huang, H., Cao, H., Xing, C., Hua, Y., Zhang, M., Jin, L. (2019). Andrographolide induce human embryonic stem cell apoptosis by oxidative stress response. Molecular Cell Toxicology, 15, 209–219. doi.org/10.1007/s13273-019-0024-x
Ibrahim, N.D., Seow, L.J., Sekar, M., Rani, N.N.I.M., Lum, P.T. (2020). Ten Commonly Available Medicinal Plants in Malaysia with Potential Sun Protection Factor and Antioxidant Properties – A Review. Pharmacognosy Journal, 14, 444-455.
Jang, G.R., Harris, R.Z., Lau, D.T. (2001). Pharmacokinetics and its role in small molecule drug discovery research. Medicinal Research Reviews, 21, 382-396. doi:10.1002/med.1015
Jiang, M., Sheng, F., Zhang, Z., Ma, X., Gao, T., Fu, C. et al. (2021). Andrographis paniculata (Burm.f.) Nees and its major constituent andrographolide as potential antiviral agents. Journal of Ethnopharmacology, 272, 113954. doi:10.1016/j.jep.2021.113954
Kamiya, Y., Takaku, H., Yamada, R., Akase, C., Abe, Y., Sekiguchi, Y. et al. (2020). Determination and prediction of permeability across intestinal epithelial cell monolayer of a diverse range of industrial chemicals/drugs for estimation of oral absorption as a putative marker of hepatotoxicity. Toxicology Report, 7, 149-154. http://doi:10.1016/j.toxrep.2020.01.004
Khan, I., Mahfooz, S., Saeed, M., Ahmad, I., Ansari, I.A. (2021). Andrographolide Inhibits Proliferation of Colon Cancer SW-480 Cells via Downregulating Notch Signalling Pathway. Anticancer Agents in Medicinal Chemistry, 21, 487-97.
Knights, K.M., Stresser, D.M., Miners, J.O., Crespi, C.L. (2016). In Vitro Drug Metabolism Using Liver Microsomes. Current Protocols in Pharmacology, 74, 7.8.1–7.8.24. doi.org/10.1002/cpph.9
Kok-Yong, S., Lawrence, L. (2015). Drug Distribution and Drug Elimination. In (Ed.), Basic Pharmacokinetic Concepts and Some Clinical Applications. IntechOpen. doi.org/10.5772/59929
Konsoula, R., Jung, M. (2008). In vitro plasma stability, permeability and solubility of mercaptoacetamide histone deacetylase inhibitors. International Journal Pharmacy, 361, 19–25. doi.org/10.1016/j.ijpharm.2008.05.001
Liang, E., Liu, X., Du, Z., Yang, R., Zhao, Y. (2018). Andrographolide Ameliorates Diabetic Cardiomyopathy in Mice by Blockage of Oxidative Damage and NF-κB-Mediated Inflammation. Oxidative Medicine and Cell Longevity, 9086747. https://doi.org/10.1155/2018/9086747
Lin, T., Pan, K., Mordenti, J., Pan, L. (2007). In vitro assessment of cytochrome P450 inhibition: strategies for increasing LC/MS-based assay throughput using a one-point IC(50) method and multiplexing high-performance liquid chromatography. Journal of Pharmaceutical Science, 96, 2485–2493. doi.org/10.1002/jps.20884
Loureiro Damasceno, J.P., Silva da Rosa, H., Silva de Araújo, L., Jacometti Cardoso Furtado, N.A. (2022). Andrographis paniculata Formulations: Impact on Diterpene Lactone Oral Bioavailability. European Journal of Drug Metabolism and Pharmacokinetics, 47, 19–30. doi.org/10.1007/s13318-021-00736-7
Lu, J., Ma, Y., Wu, J., Huang, H., Wang, X., Chen, Z. et al. (2019). A review for the neuroprotective effects of andrographolide in the central nervous system. Biomedicine & Pharmacotherapy, 117, 109078.
Masimirembwa, C., Thelingwani, R. (2012). Application of In Silico, In Vitro and In Vivo ADMET/PK Platforms in Drug Discovery. In: Chibale, K., Davies-Coleman, M., Masimirembwa, C. (eds) Drug Discovery in Africa. Berlin, Heidelberg: Springer, pp. 151-191. doi.org/10.1007/978-3-642-28175-4_7
Morofuji, Y., Nakagawa, S. (2020). Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Current Pharmaceutical Design, 26, 1466-1485.doi:10.2174/1381612826666200224112534
Nugroho, A.E., Lindawati, N.Y., Herlyanti, K., Widyastuti, L., Pramono, S. (2013). Anti-diabetic effect of a combination of andrographolide-enriched extract of Andrographis paniculata (Burm f.) Nees and asiaticoside-enriched extract of Centella asiatica L. in high fructose-fat fed rats. Indian Journal of Experimental Biology, 51, 1101–1108.
Pan, Y., Abd-Rashid, B.A., Ismail, Z., Ismail, R., Mak, J.W., Pook, P.C. et al. (2011). In vitro determination of the effect of Andrographis paniculata extracts and andrographolide on human hepatic cytochrome P450 activities. Journal of Natural Medicine, 65, 440-447. doi:10.1007/s11418-011-0516-z
Panossian, A., Hovhannisyan, A., Mamikonyan, G., Abrahamian, H., Hambardzumyan, E., Gabrielian, E. et al. (2000). Pharmacokinetic and oral bioavailability of andrographolide from Andrographis paniculata fixed combination Kan Jang in rats and human. Phytomedicine, 7, 351–364. doi.org/10.1016/S0944-7113(00)80054-9
Rajanna, M., Bharathi, B., Shivakumar, B.R., Deepak, M., Prashanth, D., Prabakaran, D. et al. (2021). Immunomodulatory effects of Andrographis paniculata extract in healthy adults - An open-label study. Journal of Ayurveda and Integrative Medicine, 12(3), 529-534. doi: 10.1016/j.jaim.2021.06.004.
Rozo, V., Quan, M., Aung, T., Kang, J., Thomasy, S.M., Leonard, B.C. (2022). Andrographolide Inhibits Corneal Fibroblast to Myofibroblast Differentiation In Vitro. Biomolecules, 12, 1447. doi.org/10.3390/biom12101447
Sa-ngiamsuntorn, K., Suksatu, A., Pewkliang, Y., Thongsri, P., Kanjanasirirat, P., Manopwisedjaroen, S. et al. (2021). Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives. Journal of Natural Product, 84, 1261-1270. doi.org/10.1021/acs.jnatprod.0c01324
Seyedhosseini, G.H., Damavandi, M.S., Sadeghi, P., Massah, A.R., Hamidi Asl, T., Salari-Jazi, A. et al. (2022). Targeting and ultrabroad insight into molecular basis of Resistance-nodulation-cell division efflux pumps. Scientific Report, 12, 16130. doi.org/10.1038/s41598-022-20278-5
Sharifuddin, Y., Parry, E.M., Parry, J.M. (2012). The genotoxicity and cytotoxicity assessments of andrographolide in vitro. Food and Chemical Toxicology, 50, 1393–1398. doi.org/10.1016/j.fct.2012.01.039
Sinha, S. (2000). Raghuwanshi R. Evaluation of phytochemical, antioxidant and reducing activity in whole plant extract of Andrographis paniculata (Burm.f.) Wall. Ex Nees. Bioscience Biotechnology Research Communications, 13, 1734-1742.
Srinivasan, M.R., Preetha, S.P., Sudhakar, G.V., Tirumurugaan, K.G., Seshiah, A., Ramesh, S. (2021). Genotoxicity assessment of andrographolide in Ames mutagenicity assay and in vitro chromosomal aberration assay. Pharma Innovation, 10, 61-65.
Tang, J., Huber, A.D., Pineda, D.L., Boschert, K.N., Wolf, J.J., Kankanala, et al. (2019). 5-Aminothiophene-2,4-dicarboxamide analogues as hepatitis B virus capsid assembly effectors. European Journal of Medicinal Chemistry, 164, 179-192. doi:10.1016/j.ejmech.2018.12.047
Tuntland, T., Ethell, B., Kosaka, T., Blasco, F., Zang, R.X., Jain, M. et al. (2014). Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Frontier Pharmacology, 5, 174. doi.org/10.3389/fphar.2014.00174
Turner, P.V., Brabb, T., Pekow, C., Vasbinder, M.A. (2011). Administration of substances to laboratory animals: routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science, 50(5), 600-613.
Worasuttayangkurn, L., Nakareangrit, W., Kwangjai, J., Sritangos, P., Pholphana, N., Watcharasit, P. et al. (2019). Acute oral toxicity evaluation of Andrographis paniculata-standardized first true leaf ethanolic extract. Toxicology Reports, 6, 426–430. doi.org/10.1016/j.toxrep.2019.05.003
Yan, Y., Fang, L.H., Du, G.H. (2018). Andrographolide. In: Natural Small Molecule Drugs from Plants. Singapore: Springer, pp. 357-362.doi.org/10.1007/978-981-10-8022-7_60
Yang, T., Xu, C., Wang, Z.T., Wang, C.H. 2013. Comparative pharmacokinetic studies of andrographolide and its metabolite of 14-deoxy-12-hydroxy-andrographolide in rat by ultra-performance liquid chromatography-mass spectrometry. Biomedical Chromatography, 27(7), 931–937. doi.org/10.1002/bmc.288
Ye, L., Wang, T., Tang, L., Liu, W., Yang, Z., Zhou, J. et al. (2011). Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein. Journal of Pharmaceutical Sciences, 100(11), 5007-50017.
Yoopan, N., Thisoda, P., Rangkadilok, N., Sahasitiwat, S., Pholphana, N., Ruchirawat, S. et al. (2007). Cardiovascular effects of 14-deoxy-11,12-didehydroandrographolide and Andrographis paniculata extracts. Planta Medica, 73(6), 503–511. https://doi.org/10.1055/s-2007-967181
Yu, H., Yang, J., Ding, J., He, Y., Jiang, Z., Chai, X. et al. (2018). Stability Study and Identification of Degradation Products of Caffeoylgluconic Acid Derivatives from Fructus Euodiae. Molecules, 23(8), 1975. doi:10.3390/molecules23081975
Yuan, Y., Meng, G., Li, Y., Wu, C. (2022). Study on In Vitro Metabolism and In Vivo Pharmacokinetics of Beauvericin. Toxins, 14, 477.
Zhang, X., Zhang, X., Wang, X., Zhao, M. (2018). Influence of andrographolide on the pharmacokinetics of warfarin in rats. Pharmaceutical Biology, 56(1), 351–356. doi.org/10.1080/13880209.2018.1478431