Natural Bioactive Cyclopeptides from Microbes as Promising Anticancer Drug Leads: A Mini-review

  • Linda Sukmarini Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia
Keywords: bioactive anticancer, cyclopeptides, natural products, microbes

Abstract

Natural products from microbes are a rich source of bioactive molecules to serve as drug leads, predominantly in cancer therapy. Peptides are among the essential nature-derived biomolecules. Owing to their great diversity and favorable characteristics, cyclic peptides (cyclopeptides) from natural sources have become a propitious lead candidate for the development of therapeutics, including anticancer drugs. This present mini-review highlights cyclopeptides from microbial-derived natural products that have demonstrated significant cytotoxicity or anticancer activities. Moreover, this mini-review also provides a look into the mode of action of anticancer cyclopeptides. Selected examples are given for the potent anticancer cyclopeptides isolated in the recent decade from fungi and bacteria from both terrestrial and marine origins. Naturally occurring cyclopeptides with canonical and non-canonical amino acids isolated from fungi, myxobacteria, actinomycetes, marine cyanobacteria, and microbes associated with marine organisms and their anticancer activity are featured herein.

References

Abdalla MA., 2016. Medicinal significance of naturally occurring cyclotetrapeptides. J. Nat. Med. 70(4): 708–720. DOI.10.1007/s11418-016-1001-5
Abdalla MA., 2017. Three new cyclotetrapeptides isolated from Streptomyces sp. 447. Nat. Prod. Res. 31(9): 1014–1021. DOI.10.1080/14786419.2016.1263849
Abdalla, MA., Matasyoh JC., 2014. Endophytes as producers of peptides: an overview about the recently discovered peptides from endophytic microbes. Nat. Prod. Bioprospect. 4(5): 257–270. DOI.10.1007/s13659-014-0038-y
Abdalla MA., Mcgaw LJ., 2018. Natural cyclic peptides as an attractive modality for therapeutics : a mini review. Molecules. 23: 2080. DOI.10.3390/molecules 23082080
Aina OH., Sroka TC., Chen ML., Lam, KS., 2002. Therapeutic cancer targeting peptides. Biopolymers (Pept. Sci.). 66(3): 184–199. DOI.10.1002/bip.10257
Albarano L., Esposito R., Ruocco N., Costantini M., 2020. Genome mining as new challenge in natural products discovery. Mar. Drugs. 18(4): 1–17. DOI.10.3390/ md18040199
Andavan GSB., Lemmens-Gruber R., 2010. Cyclodepsipeptides from marine sponges: Natural agents for drug research. Mar. Drugs. 8(3): 810–834. DOI.10.3390/ md8030810
Bajaj K., 2019. Natural bioactive cyclic peptides and peptidomimetics, in Studies in Natural Products Chemistry (1st ed., Vol. 62, pp. 343–376). Elsevier B.V. DOI.10.1016/B978-0-444-64185-4.00009-5
Blunt JW., Copp BR., Keyzers RA., Munro MHG., & Prinsep MR., 2016. Marine natural products. Nat. Prod. Rep. 33(3): 382–431. DOI.10.1039/c5np00156k
Brogden KA., Ackermann M., McCray, PB., Tack, BF., 2003. Antimicrobial peptides in animals and their role in host defences. Int. J. Antimicrob. Agents. 22(5): 465–478. DOI.10.1016/S0924-8579(03)00180-8
Carroll AR., Copp BR., Davis RA., Keyzers RA., Prinsep, MR., 2020. Marine natural products. Nat. Prod. Rep. 37(2): 175–223. DOI.10.1039/c9np00069k
Chen Z., Song Y., Chen Y., Huang H., Zhang W., Ju J., 2012. Cyclic heptapeptides, cordyheptapeptides C-E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities. J. Nat. Prod. 75(6): 1215–1219. DOI.10.1021/np300152d
Chiangjong W., Chutipongtanate S., Hongeng S., 2020. Anticancer peptide: physicochemical property, functional aspect and trend in clinical application (Review). Int. J. Oncol. 57(3): 678–696. DOI.10.3892/ijo.2020.5099
Cragg GM., Pezzuto M., 2016. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract. 25(2): 41–59. DOI.10.1159/000443404
Cunha NB., Cobacho NB., Viana JFC., Lima LA., Sampaio KBO., Dohms, SSM., Ferreira ACR., Fuenta-Núňez C., Costa FF., Franco OL., Dias, S. C., 2017. The next generation of antimicrobial peptides (AMPs ) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today. 22(2): 234–248. DOI.10.1016/j.drudis.2016.10.017
Delgado-Calle J., Kurihara N., Atkinson EG., Nelson J., Miyagawa K., Galmarini, CM., Roodman GD., Bellido, T., 2019. Aplidin (plitidepsin) is a novel anti-myeloma agent with potent anti-resorptive activity mediated by direct effects on osteoclasts. Oncotarget, 10(28): 2709–2721. DOI.10.18632/oncotarget.26831
Demain AL., Vaishnav P., 2011. Natural products for cancer chemotherapy. Microb. Biotechnol. 4(6): 687–699. DOI.10.1111/j.1751-7915.2010.00221.x
Deshmukh SK., Gupta MK., Prakash V., Reddy MS., 2018a. Mangrove-associated fungi: a novel source of potential anticancer compounds. J. Fungi. 4(3): 101. DOI.10.3390/jof4030101
Deshmukh SK., Prakash V., Ranjan, N., 2018b. Marine fungi: a source of potential anticancer compounds. Front. Microbiol. 8: 1–24. DOI.10.3389/fmicb.2017.02536
Diez J., Martinez JP., Mestres J., Sasse F., Frank R., Meyerhans A., 2012. Myxobacteria: natural pharmaceutical factories. Microb. Cell Fact. 11: 2–4. DOI.10.1186/1475-2859-11-52
Ebada, SS., Fischer T., Hamacher A., Du FY., Roth YO., Kassack MU., Wang BG., Roth EH., 2014. Psychrophilin E, a new cyclotripeptide, from co-fermentation of two marine alga-derived fungi of the genus Aspergillus. Nat. Prod. Res. 28(11): 776–781. DOI.10.1080/14786419.2014.880911
Elrayess RA., El-Hak HNG., 2019. Anticancer natural products: a review. Cancer Stud. Mol. Med. Open J. 5(1): 11–22. DOI.10.17140/CSMMOJ-5-127
Engene N., Rottacker EC., Kaštovský J., Byrum T., Choi H., Ellisman MH., Komárek J., Gerwick WH., 2012. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 62(5): 1171–1178. DOI.10.1099/ijs.0.033761-0
Ercolano G., Cicco, PD., Ianaro, A., 2019. New drugs from the sea: pro-apoptotic activity of sponges and algae derived compounds. Mar. Drugs. 17: 31. DOI.10.3390/md17010031
Falanga A., Nigro E., Biasi, MGD., Daniele A., Morelli G., Galdiero S., Scudiero O., 2017. Cyclic peptides as novel therapeutic microbicides: engineering of human defensin mimetics. Molecules. 22: 1217. DOI.10.3390/molecules22071217
Felício MR., Silva ON., Gonçalves S., Santos NC., Franco OL., 2017. Peptides with dual antimicrobial and anticancer activities. Front. Chem. 5: 1–9. DOI.10.3389/fchem.2017.00005
Gao CH., Chen YN., Pan LX., Lei F., Long B., Hu, LQ., Zhang RC., Ke K., Huang, RM., 2014. Two new cyclic tetrapeptides from deep-sea bacterium Bacillus amyloliquefaciens GAS 00152. J. Antibiot. 67(7): 541–543. DOI.10.1038/ja. 2014.27
Guo H., Kreuzenbeck NB., Otani S., Garcia-Altares M., Dahse HM., Weigel, C., Aanen DK., Hertweck C., Poulsen M., Beemelmanns C., 2016. Pseudoxylallemycins A-F, cyclic tetrapeptides with rare allenyl modifications Isolated from Pseudoxylaria sp. X802: a competitor of fungus-growing termite cultivars. Org. Lett. 18(14): 3338–3341. DOI.10.1021/acs.orglett.6b01437
Gupta S., Krasnoff SB., Underwood NL., Renwick JAA., Roberts DW., 1991. Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathologia, 115(3): 185–189. DOI.10.1007/BF00462223
Hamill RL., Higgens CE., Boaz HE., Gorman M., 1969. The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett. 10(49): 4255–4258. DOI.10.1016/S0040-4039(01)88668-8
He F., Bao J., Zhang XY., Tu ZC., Shi YM., Qi, SH., 2012. Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marined-derived fungus Aspergillus terreus SCSGAF0162. J. Nat. Prod. 36: 1–5.
Henninot A., Collins JC., Nuss, JM., 2018. The current state of peptide drug discovery : back to the future ? J. Med. Chem. 61: 1382–1414. DOI.10.1021/acs. jmedchem.7b00318
Hilchie AL., Hoskin DW., Coombs MRP., 2019. Anticancer activities of natural and synthetic peptides, in Advances in Experimental Medicine and Biology (Antimicrob), edited by K. Matsuzaki, Springer Nature Singapore. pp. 131–147. DOI.10.1007/978-981-13-3588-4_9
Hoffmann H., Kogler H., Heyse W., Matter H., Caspers M., Schummer D., Klemke-Jahn C., Bauer A., Penarier G., Debussche L, Brönstrup M., 2015. Discovery, structure elucidation, and biological characterization of nannocystin A, a macrocyclic myxobacterial metabolite with potent antiproliferative properties. Angew. Chem. Int. Ed., 54: 10145–10148. DOI.10.1002/anie.201411377
Holohan C., Van Schaeybroeck S., Longley DB., Johnston, PG., 2013. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer. 13(10): 714–726. DOI.10.1038/nrc3599
Horton DA., Bourne GT., Smythe ML., 2000. Exploring privileged structures: the combinatorial synthesis of cyclic peptides. Mol. Diver. 5(4): 289–304. DOI.10.1023/A:1021365402751
Hoskin DW., Ramamoorthy A., 2008. Studies on anticancer activities of antimicrobial peptides. BBA-Biomembranes. 1778(2): 357–375. DOI.10.1016/j.bbamem. 2007. 11.008
Hu E., Wang D., Chen J., Tao, X., 2015. Novel cyclotides from Hedyotis diffusa induce apoptosis and inhibit proliferation and migration of prostate cancer cells. Int. J. Clin. Exp. Med. 8(3): 4059–4065.
Kang HK., Choi MC., Seo CH., Park, Y., 2018. Therapeutic properties and biological benefits of marine-derived anticancer peptides. Int. J. Mol. Sci. 19: 919. DOI.10.3390/ijms19030919
Katz L., Baltz RH., 2016. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol. 43: 155–176. DOI.10.1007/s10295-015-1723-5
Kaweewan I., Komaki H., Hemmi H., Hoshino K., Hosaka T., Isokawa G., Oyoshi T., Kodani S., 2019. Isolation and structure determination of a new cytotoxic peptide, curacozole, from Streptomyces curacoi based on genome mining. J. Antibiot. 72: 1–7. DOI.10.1038/s41429-018-0105-4
Krastel P., Roggo S., Schirle M., Ross NT., Perruccio F., Aspesi Jr., Aust T., Buntin K., Estoppey D., Liechty B., Mapa F., Memmert K., Miller H., Pan X., Riedl R., Thibaut C., Thomas J., Wagner T., Weber E., Xie X., Schmitt EK., Hoepfner D., 2015. Nannocystin A: an elongation factor 1 Inhibitor from Myxobacteria with differential anti-cancer properties. Angew. Chem. Int. Ed. 54(35): 10149–10154. DOI.10.1002/anie.201505069
Lee N., Hwang S., Kim J., Cho S., Palsson B., Cho BK., 2020. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct. Biotechnol. J. 18: 1548–1556. DOI.10. 1016/j.csbj.2020.06.024
Lee Y., Phat C., Hong S.C., 2017. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides. 95: 94–105. DOI.10.1016/j.peptides.2017.06.002
Levert A., Alvariño R., Bornancin L., Mansour EA., Burja AM., Genevière, AM., Bonnard I., Alonso E, Botana L., Banaigs B., 2018. Structures and activities of tiahuramides A-C, cyclic depsipeptides from a tahitian collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 81(6): 1301–1310. DOI.10.1021/acs.jnatprod.7b00751
Liu J., Zhu X., Kim SJ., Zhang W., 2016. Antimycin-type depsipeptides: discovery, biosynthesis, chemical synthesis, and bioactivities. Nat. Prod. Rep., 33(10): 1146–1165. DOI.10.1039/c6np00004e
Lopez JAV, Al-Lihaibi, SS., Alarif WM., Abdel-Lateff A., Nogata Y., Washio K., Morikawa M., Okino T., 2016. Wewakazole B, a cytotoxic cyanobactin from the cyanobacterium Moorea producens Collected in the Red Sea. J. Nat. Prod. 79: 1213–1218. DOI.10.1021/acs.jnatprod.6b00051
Ma YM., Liang XA., Zhang HC., Liu, R., 2016. Cytotoxic and antibiotic cyclic pentapeptide from an endophytic Aspergillus tamarii of Ficus carica. J. Agr. Food Chem.,64(19): 3789–3793. DOI.10.1021/acs.jafc.6b01051
Mevers E., Liu WT., Engene N., Mohimani H., Byrum T., Pevzner PA., Dorrestein PC., Spadafora C., Gerwick WH., 2011. Cytotoxic veraguamides, alkynyl bromide-containing cyclic depsipeptides from the marine cyanobacterium cf. Oscillatoria margaritifera. J. Nat. Prod. 74(5): 928–936. DOI.10.1021/np200077f
Nunnery JK., Mevers E., Gerwick, WH., 2010. Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol. 21(6): 787–793. DOI.10.1016/j.copbio.2010.09.019
Odaka C., Sanders ML., Crews P., 2000. Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin. Diagn. Lab. Immunol. 7(6): 947–952. DOI.10.1128/cdli.7.6.947-952.2000
Pan X., Xu J., Jia, X., 2020. Research progress evaluating the function and mechanism of anti-tumor peptides. Cancer Manag. Res. 12: 397–409. DOI.10.2147/ CMAR.S232708
Pettit RK., 2009. Mixed fermentation for natural product drug discovery. Appl. Microbiol. Biotechnol. 83(1): 19–25. DOI.10.1007/s00253-009-1916-9
Rath CM., Janto B., Earl J., Ahmed A., Hu FZ., Hiller L., Dahlgren M., Kreft R., Yu F., Wolff JJ., Kweon HK., Christiansen MA., Håkansson K., Williams RM., Ehrlich GD., Sherman DH., 2011. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem. Biol. 743: 1244–1256. DOI.10.1021/cb200244t
Sainis I., Fokas D., Vareli K., Tzakos AG., Kounnis V., Briasoulis E., 2010. Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar. Drugs. 8: 629–657. DOI.10.3390/md8030629
Salvador LA., Biggs JS., Paul VJ., Luesch, H., 2011. Veraguamides A-G, cyclic hexadepsipeptides from a dolastatin 16-producing cyanobacterium Symploca cf. hydnoides from Guam. J. Nat. Prod. 74(5): 917–927. DOI.10.1021/np200076t
Sarasan M., Puthumana J., Job N., Han J., Lee JS., Philip R., 2017. Marine algicolous endophytic fungi-a promising drug resource of the era. J. Microbiol. Biotechnol. 27(6): 1039–1052. DOI.10.4014/jmb.1701.01036
Siegel RL., Miller KD., Jemal A., 2020. Cancer statistics, 2020. CA Cancer J. Clin. 70(1): 7–30. DOI.10.3322/caac.21590
Simmons TL., Coates RC., Clark BR., Engene N., Gonzalez D., Esquenazi E., Dorrestein PC., Gerwick WH., 2008. Biosynthetic origin of natural products isolated from marine microorganism–invertebrate assemblages. PNAS. 105(12): 4587–4594. DOI.10.1073_pnas.0709851105
Sohda K., Hiramoto M., Suzumura K., Takebayashi Y., Suzuki K., Tanaka A., 2005a. YM-216391, a novel cytotoxic cyclic peptide from Streptomyces nobilis. J. Antibiot. 58(1): 32–36. DOI.10.1038/ja.2005.3
Sohda K., Nagai K., Yamori T., Suzuki K., Tanaka A., 2005b. YM-216391, a novel cytotoxic cyclic peptide from Streptomyces nobilis: I. Fermentation, isolation and biological activities. J. Antibiot. 58(1), 27–31. https://doi.org/10.1038/ja.2005.2
Sukmarini L., 2021. Drug development from peptide-derived marine natural products. IOP Conference Series: Materials Science and Engineering. 101: 12063. DOI.10.1088/1757-899x/1011/1/012063
Taevernier L., Wynendaele E., Vreese LD., Burvenich C., Spiegeleer BD., 2016. The mycotoxin definition reconsidered towards fungal cyclic depsipeptides. J. Environ. Sci. Health C. 34(2): 114–135. DOI.10.1080/10590501.2016.1164561
Tan LT., 2010. Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. J. Appl. Phycol. 22(5): 659–676. DOI.10.1007/s10811-010-9506-x
Tan NH., Zhou J., 2006. Plant cyclopeptides. Chemical Reviews, 106(3), 840–895. https://doi.org/10.1021/cr040699h
Thundimadathil J. 2012. Cancer treatment using peptides: current therapies and. J. Amino Acids, 2012: 967347. DOI.10.1155/2012/967347
Tiffon CE., Adams JE., van der Fits L., Wen S., Townsend PA., Ganesan A., Hodges E., Vermeer MH., Packham G., 2011. The histone deacetylase inhibitors vorinostat and romidepsin downmodulate IL-10 expression in cutaneous T-cell lymphoma cells. Br. J. Pharmacol. 162(7): 1590–1602. DOI.10.1111/j.1476-5381.2010.01188.x
Tornesello AL., Borrelli A., Buonaguro L., Buonaguro FM.,Tornesello ML., 2020. Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules. 25: 2850. DOI.10.3390/molecules25122850
Tripathi A., Puddick J., Prinsep MR., Rottmann M., Chan KP., Chen DYK., Tan LT., 2011. Lagunamide C, a cytotoxic cyclodepsipeptide from the marine DOI.10.1016/j.phytochem.2011.08.019
Tripathi A., Puddick J., Prinsep MR., Rottmann M., Tan LT., 2010. Lagunamides A and B: cytotoxic and antimalarial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 73(11): 1810–1814. DOI.10.1021/np100442x
Tyagi A., Tuknait A., Anand P., Gupta S., Sharma M., Mathur D., Joshi A., Singh S., Gautam A., Raghava GPS., 2015. CancerPPD : a database of anticancer peptides and proteins. Nucleic Acids Res. 43: 837–843. DOI.10.1093/nar/gku892
Ványolós A., Dékány M., Kovács B., Krámos B., Bérdi P., Zupkó I., Hohmann J., Béni Z., 2016. Gymnopeptides A and B, cyclic octadecapeptides from the mushroom Gymnopus fusipes. Organic Lett. 18(11): 2688–2691. DOI.10.1021/ acs.orglett. 6b01158
Watters DJ., 2018. Ascidian toxins with potential for drug development. Mar. Drugs. 16: 162. DOI.10.3390/md16050162
Weissman KJ., Müller R., 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27(9): 1276–1295. DOI.10.1039/c001260m
Wong RSY. 2011. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30(1), 1–14. DOI.10.1186/1756-9966-30-87
Xie M., Liu D., Yang Y., 2020. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol. 10(7): 200004. DOI.10.1098/rsob.200004
Xu W., Li L., Du L., Tan N., 2011. Various mechanisms in cyclopeptide production from precursors synthesized independently of non-ribosomal peptide synthetases. Acta Biochim. Biophys. Sin. 43(10): 757–762. DOI.10.1093/abbs/gmr062
Youssef FS., Ashour ML., Singab ANB., Wink M. 2019. A comprehensive review of bioactive peptides from marine fungi and their biological significance. Mar. Drugs. 17(10): 559. DOI.10.3390/md17100559
Zhang P., Li X., Wang BG., 2016. Secondary metabolites from the marine algal-derived endophytic fungi: chemical diversity and biological activity. Planta Med. 82(9–10): 832–842. DOI.10.1055/s-0042-103496
Zhao H., Yan L., Xu X., Jiang C., Shi J., Zhang Y., Liu L., Lei S., Shao D., Huang Q., 2018. Potential of Bacillus subtilis lipopeptides in anti-cancer I: induction of apoptosis and paraptosis and inhibition of autophagy in K562 cells. AMB Expr. 8(1): 78. DOI.10.1186/s13568-018-0606-3
Zhou X., Huang H., Chen Y., Tan J., Song Y., Zou, J., Tian X., Hua Y., Ju J., 2012. Marthiapeptide A, an anti-infective and cytotoxic polythiazole cyclopeptide from a 60 L scale fermentation of the deep sea-derived Marinactinospora thermotolerans SCSIO 00652. J. Nat. Prod. 75(12): 2251–2255. DOI.10.1021/np300554f
Ziemert N., Alanjary M., Weber T., 2016. The evolution of genome mining in microbes-a review. Nat. Prod. Rep. 33(8): 988–1005. DOI.10.1039/c6np00025h
Zorzi A., Deyle K., Heinis, C., 2017. Cyclic peptide therapeutics: past, present and future. Curr. Opin. Chem. Biol. 38: 24–29. DOI.10.1016/j.cbpa.2017.02.006
Published
2021-08-10
How to Cite
Sukmarini, L. (2021). Natural Bioactive Cyclopeptides from Microbes as Promising Anticancer Drug Leads: A Mini-review. Indonesian Journal of Pharmacy, 32(3), 291-303. https://doi.org/10.22146/ijp.1270
Section
Review Article