Review and bibliometric analysis of research on herbal medicine for inflammation between 2004 and 2023

  • Nanang Fakhrudin Fakultas Farmasi, UGM
Keywords: Medicinal plant, Anti-inflammation, Bibliometric Analysis, Scopus Database

Abstract

The study aimed to conduct a bibliometric analysis to examine patterns and trends observed in scientific articles on using herbal anti-inflammatory agents. Data were gathered from the Scopus database. In total, 121 articles on herbal anti-inflammatory drugs were examined through bibliometric analysis using the (RStudio®) and VOSviewer application. In the Scopus database, 121 articles on using herbal remedies to treat inflammation were included in this study. Moreover, China has produced the most research articles. The Journal of Ethnopharmacology, Molecules, and Molecules are the three most-read journals. The Journal of Ethnopharmacology demonstrates the highest level of productivity based on its citation count and h-index. Regarding publications on this topic, Li J is regarded as a leading figure. Articles by Li J have received the most citations (143), followed by those published by Li X (134). This study can be used as a reference by researchers when conducting studies on medicinal plants used as anti-inflammatory agents. The findings of this study also make it easier for researchers to locate a substantial global network of academics and promote collaboration in this area.

References

Abdallah, H. M., & Esmat, A. (2017). Antioxidant and anti-inflammatory activities of the major phenolics from Zygophyllum simplex L. Journal of Ethnopharmacology, 205, 51–56. Scopus. https://doi.org/10.1016/j.jep.2017.04.022
Agbo, F. J., Oyelere, S. S., Suhonen, J., & Tukiainen, M. (2021). Scientific production and thematic breakthroughs in smart learning environments: A bibliometric analysis. Smart Learning Environments, 8(1), 1. https://doi.org/10.1186/s40561-020-00145-4
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Bagad, A. S., Joseph, J. A., Bhaskaran, N., & Agarwal, A. (2013). Comparative Evaluation of Anti-Inflammatory Activity of Curcuminoids, Turmerones, and Aqueous Extract of Curcuma longa. Advances in Pharmacological Sciences, 2013, 1–7. https://doi.org/10.1155/2013/805756
Bamel, U. K., Pandey, R., & Gupta, A. (2020). Safety climate: Systematic literature network analysis of 38 years (1980-2018) of research. Accident Analysis & Prevention, 135, 105387. https://doi.org/10.1016/j.aap.2019.105387
Baumgartner, L., Sosa, S., Atanasov, A. G., Bodensieck, A., Fakhrudin, N., Bauer, J., Favero, G. D., Ponti, C., Heiss, E. H., Schwaiger, S., Ladurner, A., Widowitz, U., Loggia, R. D., Rollinger, J. M., Werz, O., Bauer, R., Dirsch, V. M., Tubaro, A., & Stuppner, H. (2011). Lignan Derivatives from Krameria lappacea Roots Inhibit Acute Inflammation in Vivo and Pro-inflammatory Mediators in Vitro. Journal of Natural Products, 74(8), 1779–1786. https://doi.org/10.1021/np200343t
Bonaccorsi, A. (2008). Search Regimes and the Industrial Dynamics of Science. Minerva, 46(3), 285–315. https://doi.org/10.1007/s11024-008-9101-3
Chang, Y.-W., Huang, M.-H., & Lin, C.-W. (2015). Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses. Scientometrics, 105(3), 2071–2087. https://doi.org/10.1007/s11192-015-1762-8
Chen, G., Wu, J., Li, N., & Guo, M. (2018). Screening for anti-proliferative and anti-inflammatory components from Rhamnus davurica Pall. Using bio-affinity ultrafiltration with multiple drug targets. Analytical and Bioanalytical Chemistry, 410(15), 3587–3595. Scopus. https://doi.org/10.1007/s00216-018-0953-6
Colombini, A., Libonati, F., Cangelosi, D., Lopa, S., De Luca, P., Coviello, D. A., Moretti, M., & De Girolamo, L. (2022). Inflammatory priming with IL-1β promotes the immunomodulatory behavior of adipose derived stem cells. Frontiers in Bioengineering and Biotechnology, 10, 1000879. https://doi.org/10.3389/fbioe.2022.1000879
de Oliveira, R. G., Mahon, C. P. A. N., Ascêncio, P. G. M., Ascêncio, S. D., Balogun, S. O., & Martins, D. T. de O. (2014). Evaluation of anti-inflammatory activity of hydroethanolic extract of Dilodendron bipinnatum Radlk. Journal of Ethnopharmacology, 155(1), 387–395. https://doi.org/10.1016/j.jep.2014.05.041
Dewanjee, S., Dua, T. K., & Sahu, R. (2013). Potential anti-inflammatory effect of Leea macrophylla Roxb. leaves: A wild edible plant. Food and Chemical Toxicology, 59, 514–520. https://doi.org/10.1016/j.fct.2013.06.038
Dinarello, C. A. (2010). Anti-inflammatory Agents: Present and Future. Cell, 140(6), 935–950. https://doi.org/10.1016/j.cell.2010.02.043
Divya, T., Latha, P., Usha, K., Anuja, G., Suja, S., Shyamal, S., Shine, V., Sini, S., Shikha, P., & Rajasekharan, S. (2009). Anti-inflammatory, analgesic and anti-lipid peroxidative properties of Wattakaka volubilis (Linn.f.) Stapf. 8.
Djunarko, I., Fakhrudin, N., Nurrochmad, A., & Wahyuono, S. (2022). In vivo Anti-Inflammatory Activity of Coleus atropurpureus Leaves Extract and Fractions. Tropical Journal of Natural Product Research, 6(1), 40–43. https://doi.org/10.26538/tjnpr/v6i1.8
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
El Gizawy, H. A., Boshra, S. A., Mostafa, A., Mahmoud, S. H., Ismail, M. I., Alsfouk, A. A., Taher, A. T., & Al-Karmalawy, A. A. (2021). Pimenta dioica (L.) merr. Bioactive constituents exert anti-sars-cov-2 and anti-inflammatory activities: Molecular docking and dynamics, in vitro, and in vivo studies. Molecules, 26(19). Scopus. https://doi.org/10.3390/molecules26195844
Fakhrudin, N., Dwi Astuti, E., Sulistyawati, R., Santosa, D., Susandarini, R., Nurrochmad, A., & Wahyuono, S. (2017). N-Hexane Insoluble Fraction of Plantago lanceolata Exerts Anti-Inflammatory Activity in Mice by Inhibiting Cyclooxygenase-2 and Reducing Chemokines Levels. Scientia Pharmaceutica, 85(1), 12. https://doi.org/10.3390/scipharm85010012
Fakhrudin, N., Hastuti, S., Andriani, A., Widyarini, S., & Nurrochmad, A. (2015). Study on the Antiinflammatory Activity of Artocarpus altilis Leaves Extract in Mice. International Journal of Pharmacognosy and Phytochemical Research, 7(6), 1080–1085.
Fakhrudin, N., Putri, P. S., & Wahyuono, S. (2013). Antiinflamatory Activity of Methanolic Extract Of Mangifera Casturi in Thioglycollate-Induced Leukocyte Migration On Mice. Traditional Medicine Journal, 18(3), 151–156.
Falade, T., Ishola, I. O., Akinleye, M. O., Oladimeji-Salami, J. A., & Adeyemi, O. O. (2019). Antinociceptive and anti-arthritic effects of aqueous whole plant extract of Trianthema portulacastrum in rodents: Possible mechanisms of action. Journal of Ethnopharmacology, 238. Scopus. https://doi.org/10.1016/j.jep.2019.111831
Fatimah, S. F., Lukitaningsih, E., Martien, R., & Nugroho, A. K. (2022). Bibliometric analysis of articles on nanoemulsion and/or in-situ gel for ocular drug delivery system published during the 2011–2021 period. Pharmacia, 69(2), 467–484. https://doi.org/10.3897/pharmacia.69.e82847
Fernández, M. I. E., Barbosa, P. L., & Guerrero, A. P. (2010). Web of Science Vs. Scopus: Un Estudio Cuantitativo en Ingeniería química. anales de documentación.
Gao, H., Cui, Y., Kang, N., Liu, X., Liu, Y., Zou, Y., Zhang, Z., Li, X., Yang, S., Li, J., Wang, C., Xu, Q., & Chen, X. (2017a). Isoacteoside, a dihydroxyphenylethyl glycoside, exhibits anti‐inflammatory effects through blocking toll‐like receptor 4 dimerization. British Journal of Pharmacology, 174(17), 2880–2896. https://doi.org/10.1111/bph.13912
Gao, H., Cui, Y., Kang, N., Liu, X., Liu, Y., Zou, Y., Zhang, Z., Li, X., Yang, S., Li, J., Wang, C., Xu, Q.-M., & Chen, X. (2017b). Isoacteoside, a dihydroxyphenylethyl glycoside, exhibits anti-inflammatory effects through blocking toll-like receptor 4 dimerization. British Journal of Pharmacology, 174(17), 2880–2896. Scopus. https://doi.org/10.1111/bph.13912
Gautam, R., & Jachak, S. M. (2009). Recent developments in anti-inflammatory natural products. Medicinal Research Reviews, 29(5), 767–820. https://doi.org/10.1002/med.20156
Girard, S., Kadhim, H., Roy, M., Lavoie, K., Brochu, M.-E., Larouche, A., & Sébire, G. (2009). Role of Perinatal Inflammation in Cerebral Palsy. Pediatric Neurology, 40(3), 168–174. https://doi.org/10.1016/j.pediatrneurol.2008.09.016
Giribabu, N., Karim, K., Kilari, E. K., & Salleh, N. (2017). Phyllanthus niruri leaves aqueous extract improves kidney functions, ameliorates kidney oxidative stress, inflammation, fibrosis and apoptosis and enhances kidney cell proliferation in adult male rats with diabetes mellitus. Journal of Ethnopharmacology, 205, 123–137. Scopus. https://doi.org/10.1016/j.jep.2017.05.002
Gorzalczany, S., López, P., Acevedo, C., & Ferraro, G. (2011). Anti-inflammatory effect of Lithrea molleoides extracts and isolated active compounds. Journal of Ethnopharmacology, 133(3), 994–998. https://doi.org/10.1016/j.jep.2010.11.031
Grames, E. M., Stillman, A. N., Tingley, M. W., & Elphick, C. S. (2019). An automated approach to identifying search terms for systematic reviews using keyword co‐occurrence networks. Methods in Ecology and Evolution, 10(10), 1645–1654. https://doi.org/10.1111/2041-210X.13268
Guha, M., & Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cellular Signalling, 13(2), 85–94. https://doi.org/10.1016/S0898-6568(00)00149-2
Guo, D.-S., Cao, X., Chen, H.-Q., Wei, Y.-M., Wang, H., Cai, C.-H., Dai, H.-F., Yang, L., & Mei, W.-L. (2023). Anti-inflammatory and α-glucosidase inhibitory constituents from Dendrobium nobile Lindl. Fitoterapia, 169, 105582. https://doi.org/10.1016/j.fitote.2023.105582
Guo, P., Jin, L., Zhou, H., Bao, Y., Yang, J., Chen, J., He, Y., Yu, D., & Wan, H. (2023). Glycyrrhetinic acid protects against Multidrug-resistant Acinetobacter baumannii-induced lung epithelial cells injury by regulating inflammation and oxidative stress. BMC Pharmacology and Toxicology, 24(1). Scopus. https://doi.org/10.1186/s40360-023-00648-z
Güran, M., Şanlıtürk, G., Kerküklü, N. R., Altundağ, E. M., & Süha Yalçın, A. (2019). Combined effects of quercetin and curcumin on anti-inflammatory and antimicrobial parameters in vitro. European Journal of Pharmacology, 859. Scopus. https://doi.org/10.1016/j.ejphar.2019.172486
Hayden, M. S., & Ghosh, S. (2012). NF-κB, the first quarter-century: Remarkable progress and outstanding questions. Genes & Development, 26(3), 203–234. https://doi.org/10.1101/gad.183434.111
Hendrayani, S.-F., Al-Harbi, B., Al-Ansari, M. M., Silva, G., & Aboussekhra, A. (2106). The inflammatory/cancer-related IL-6/STAT3/NF-κB positive feedback loop includes AUF1 and maintains the active state of breast myofibroblasts. Oncotarget, 7(27), 41974–41985. https://doi.org/10.18632/oncotarget.9633
Henríquez-Olguín, C., Altamirano, F., Valladares, D., López, J. R., Allen, P. D., & Jaimovich, E. (2015). Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1852(7), 1410–1419. https://doi.org/10.1016/j.bbadis.2015.03.012
Hou, J.-Q., Guo, C., Zhao, J.-J., Dong, Y.-Y., Hu, X.-L., He, Q.-W., Zhang, B.-B., Yan, M., & Wang, H. (2017). Anti-inflammatory Meroterpenoids from Baeckea frutescens. Journal of Natural Products, 80(8), 2204–2214. Scopus. https://doi.org/10.1021/acs.jnatprod.7b00042
Huang, L.-J., Gao, W.-Y., Li, X., Zhao, W.-S., Huang, L.-Q., & Liu, C.-X. (2010). Evaluation of the in vivo anti-inflammatory effects of extracts from Pyrus bretschneideri Rehd. Journal of Agricultural and Food Chemistry, 58(16), 8983–8987. Scopus. https://doi.org/10.1021/jf101390q
Huang, Y., Huang, X., Tian, G., Zhang, W., Su, S., Xu, X., Li, J., & Liu, B. (2022). Two new amide glycosides with anti-inflammatory activity from the leaves of Streblus ilicifolius (Vidal) Corner. Natural Product Research, 36(6), 1485–1493. Scopus. https://doi.org/10.1080/14786419.2021.1893318
Jang, H.-J., Lee, S., Lee, S.-J., Lim, H.-J., Jung, K., Kim, Y. H., Lee, S. W., & Rho, M.-C. (2017). Anti-inflammatory Activity of Eudesmane-Type Sesquiterpenoids from Salvia plebeia. Journal of Natural Products, 80(10), 2666–2676. Scopus. https://doi.org/10.1021/acs.jnatprod.7b00326
Jang, M. K., Lee, H. J., Kim, J. S., & Ryu, J.-H. (2004). A curcuminoid and two sesquiterpenoids fromCurcuma zedoaria as Inhibitors of nitric oxide synthesis in activated macrophages. Archives of Pharmacal Research, 27(12), 1220–1225. Scopus. https://doi.org/10.1007/BF02975885
Jia, X.-Y., Wu, Y.-M., Li, J.-Y., Lei, C., & Hou, A.-J. (2020). Alkaloid Constituents of Ficus hispida and Their Antiinflammatory Activity. Natural Products and Bioprospecting, 10(1), 45–49. https://doi.org/10.1007/s13659-020-00233-5
Jiang, H., Han, H., Man, W.-J., Hou, A.-J., Guo, X.-Y., Xing, X.-D., Yan, M.-L., Yang, L., & Yang, L. (2020). Ursane-type triterpenoids from the roots of Rosa multiflora with their anti-inflammatory activity. Journal of Asian Natural Products Research, 22(2), 131–137. Scopus. https://doi.org/10.1080/10286020.2018.1541135
Jo, W. S., Yang, K. M., Choi, Y. J., Jeong, C. H., Ahn, K. J., Nam, B. H., Lee, S. W., Seo, S. Y., & Jeong, M. H. (2010). In vitro and in vivo anti-inflammatory effects of pegmatite. Molecular & Cellular Toxicology, 6(2), 195–202. https://doi.org/10.1007/s13273-010-0027-0
Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy—From molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1754(1–2), 253–262. https://doi.org/10.1016/j.bbapap.2005.08.017
Kandil, Z. A., Esmat, A., El-Din, R. S., & Ezzat, S. M. (2020). Anti-inflammatory activity of the lipophilic metabolites from Scolymus hispanicus L. South African Journal of Botany, 131, 43–50. Scopus. https://doi.org/10.1016/j.sajb.2020.01.022
Kent Baker, H., Pandey, N., Kumar, S., & Haldar, A. (2020). A bibliometric analysis of board diversity: Current status, development, and future research directions. Journal of Business Research, 108, 232–246. https://doi.org/10.1016/j.jbusres.2019.11.025
Khitous, F., Strozzi, F., Urbinati, A., & Alberti, F. (2020). A Systematic Literature Network Analysis of Existing Themes and Emerging Research Trends in Circular Economy. Sustainability, 12(4), 1633. https://doi.org/10.3390/su12041633
Kumari, K. D. K. P., Weerakoon, T. C. S., Handunnetti, S. M., Samarasinghe, K., & Suresh, T. S. (2014). Anti-inflammatory activity of dried flower extracts of Aegle marmelos in Wistar rats. Journal of Ethnopharmacology, 151(3), Article 3. https://doi.org/10.1016/j.jep.2013.12.043
Kyriakis, J. M., & Avruch, J. (2001). Mammalian Mitogen-Activated Protein Kinase Signal Transduction Pathways Activated by Stress and Inflammation. Physiological Reviews, 81(2), 807–869. https://doi.org/10.1152/physrev.2001.81.2.807
Lawrence, T. (2009). The Nuclear Factor NF- B Pathway in Inflammation. Cold Spring Harbor Perspectives in Biology, 1(6), a001651–a001651. https://doi.org/10.1101/cshperspect.a001651
Li, Q., Yang, K.-X., Zhao, Y.-L., Qin, X.-J., Yang, X.-W., Liu, L., Liu, Y.-P., & Luo, X.-D. (2016). Potent anti-inflammatory and analgesic steroidal alkaloids from Veratrum taliense. Journal of Ethnopharmacology, 179, 274–279. https://doi.org/10.1016/j.jep.2015.12.059
Li, X., Qi, H., Zhang, X., Liang, H., & Zeng, N. (2023). Jing-Fang n-butanol extract and its isolated JFNE-C inhibit ferroptosis and inflammation in LPS induced RAW264.7 macrophages via STAT3/p53/SLC7A11 signaling pathway. Journal of Ethnopharmacology, 316. Scopus. https://doi.org/10.1016/j.jep.2023.116689
Li, Y., Yang, D., Jia, Y., He, L., Li, J., Yu, C., Liao, C., Yu, Z., & Zhang, C. (2021). Research Note: Anti-inflammatory effects and antiviral activities of baicalein and chlorogenic acid against infectious bursal disease virus in embryonic eggs. Poultry Science, 100(4). Scopus. https://doi.org/10.1016/j.psj.2021.01.010
Liang, X., Niu, P., Li, J., Guan, X., Zhang, Y., & Li, J. (2023). Discovery of Anti-Inflammatory Triterpenoid Glucosides from the Heritiera littoralis Dryand. Molecules, 28(4), 1658. https://doi.org/10.3390/molecules28041658
Libby, P. (2013). History of Discovery: Inflammation in Atherosclerosis.
Luo, J., Kong, J.-L., Dong, B.-Y., Huang, H., Wang, K., Wu, L.-H., Hou, C.-C., Liang, Y., Li, B., & Chen, Y.-Q. (2016). Baicalein attenuates the quorum sensing-controlled virulence factors of Pseudomonas aeruginosa and relieves the inflammatory response in p. Aeruginosa-infected macrophages by downregulating the MAPK and NFκB signal-transduction pathways. Drug Design, Development and Therapy, 10, 183–203. Scopus. https://doi.org/10.2147/DDDT.S97221
Ma, R. (2012). Author bibliographic coupling analysis: A test based on a Chinese academic database. Journal of Informetrics, 6(4), 532–542. https://doi.org/10.1016/j.joi.2012.04.006
Matsuda, H., Morikawa, T., Toguchida, I., Ninomiya, K., & Yoshikawa, M. (2001). Medicinal Foodstuffs. XXVIII. Inhibitors of Nitric Oxide Production and New Sesquiterpenes, Zedoarofuran, 4-Epicurcumenol, Neocurcumenol, Gajutsulactones A and B, and Zedoarolides A and B, from Zedoariae Rhizoma. Chemical and Pharmaceutical Bulletin, 49(12), 1558–1566. https://doi.org/10.1248/cpb.49.1558
Mazzio, E. A., Li, N., Bauer, D., Mendonca, P., Taka, E., Darb, M., Thomas, L., Williams, H., & Soliman, K. F. A. (2016). Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS from E. coli O111:B4) activated macrophages and microglial cells; focus on sepsis. BMC Complementary and Alternative Medicine, 16(1). Scopus. https://doi.org/10.1186/s12906-016-1429-x
McLeish, K. R., Merchant, M. L., Creed, T. M., Tandon, S., Barati, M. T., Uriarte, S. M., & Ward, R. A. (2017). Frontline Science: Tumor necrosis factor-α stimulation and priming of human neutrophil granule exocytosis. Journal of Leukocyte Biology, 102(1), 19–29. https://doi.org/10.1189/jlb.3HI0716-293RR
Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435. https://doi.org/10.1038/nature07201
Nualkaew, S., Thongpraditchote, S., Wongkrajang, Y., Umehara, K., & Noguchi, H. (2017). Isolation of a new compound, 2-butanone 4-glucopyranoside 6′- O -gallate and other 8 compounds from the anti-inflammatory leave extracts of Memecylon edule Roxb. Natural Product Research, 31(12), 1370–1378. https://doi.org/10.1080/14786419.2016.1253074
Oeckinghaus, A., Hayden, M. S., & Ghosh, S. (2011). Crosstalk in NF-κB signaling pathways. Nature Immunology, 12(8), 695–708. https://doi.org/10.1038/ni.2065
Patil, K. R., Mahajan, U. B., Unger, B. S., Goyal, S. N., Belemkar, S., Surana, S. J., Ojha, S., & Patil, C. R. (2019). Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. International Journal of Molecular Sciences, 20(18), 4367. https://doi.org/10.3390/ijms20184367
Pearson, G., Robinson, F., Gibson, T. B., Xu, B.-E., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. 22(2).
Perianes-Rodriguez, A., Waltman, L., & Van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006
Qandil, A. (2012). Prodrugs of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), More Than Meets the Eye: A Critical Review. International Journal of Molecular Sciences, 13(12), Article 12. https://doi.org/10.3390/ijms131217244
Radulović, N. S., Randjelović, P. J., Stojanović, N. M., Cakić, N. D., Bogdanović, G. A., & Živanović, A. V. (2015). Aboriginal bush foods: A major phloroglucinol from Crimson Bottlebrush flowers (Callistemon citrinus, Myrtaceae) displays strong antinociceptive and anti-inflammatory activity. Food Research International, 77, 280–289. Scopus. https://doi.org/10.1016/j.foodres.2015.02.023
Sana, T., Khan, M., Siddiqui, B. S., Baig, T. A., Jabeen, A., Begum, S., Hadda, T. B., & Shah, L. (2024). Anti-inflammatory and urease inhibitory iridoid glycosides from Nyctanthes arbor-tristis Linn. Journal of Ethnopharmacology, 319, 117368. https://doi.org/10.1016/j.jep.2023.117368
Shehata, I. A., El-harshany, E., Abdallah, H. M., Esmat, A., & Abdel-sattar, E. A. (2018). Anti-inflammatory activity of Kleinia odora. European Journal of Integrative Medicine, 23, 64–69. Scopus. https://doi.org/10.1016/j.eujim.2018.10.005
Shiau, W.-L., Dwivedi, Y. K., & Yang, H. S. (2017). Co-citation and cluster analyses of extant literature on social networks. International Journal of Information Management, 37(5), 390–399. https://doi.org/10.1016/j.ijinfomgt.2017.04.007
Sivertsen, G., Rousseau, R., & Zhang, L. (2019). Measuring scientific contributions with modified fractional counting. Journal of Informetrics, 13(2), 679–694. https://doi.org/10.1016/j.joi.2019.03.010
Sofidiya, M. O., Imeh, E., Ezeani, C., Aigbe, F. R., & Akindele, A. J. (2014). Antinociceptive and anti-inflammatory activities of ethanolic extract of Alafia barteri. Revista Brasileira de Farmacognosia, 24(3), Article 3. https://doi.org/10.1016/j.bjp.2014.07.013
Sostres, C., Gargallo, C. J., Arroyo, M. T., & Lanas, A. (2010). Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Practice & Research Clinical Gastroenterology, 24(2), 121–132. https://doi.org/10.1016/j.bpg.2009.11.005
Su, X. D., Jang, H.-J., Li, H. X., Kim, Y. H., & Yang, S. Y. (2019). Identification of potential inflammatory inhibitors from Aster tataricus. Bioorganic Chemistry, 92. Scopus. https://doi.org/10.1016/j.bioorg.2019.103208
Suwandi, D. W., Rostnawati, T., Muchtaridi, M., & Subarnas, A. (2021). In vitro evaluation of selligueain A effects on the proinflammatory mediators production in RAW264.7 murine macrophages. Journal of Herbmed Pharmacology, 10(3), 313–318. https://doi.org/10.34172/jhp.2021.36
Tanaka, T., & Kishimoto, T. (2014). The Biology and Medical Implications of Interleukin-6. Cancer Immunology Research, 2(4), 288–294. https://doi.org/10.1158/2326-6066.CIR-14-0022
Uddin, G., Rauf, A., Siddiqui, B. S., Muhammad, N., Khan, A., & Shah, S. U. A. (2014). Anti-nociceptive, anti-inflammatory and sedative activities of the extracts and chemical constituents of Diospyros lotus L. Phytomedicine, 21(7), 954–959. https://doi.org/10.1016/j.phymed.2014.03.001
Vallabhapurapu, S., & Karin, M. (2009). Regulation and Function of NF-κB Transcription Factors in the Immune System. Annual Review of Immunology, 27(1), 693–733. https://doi.org/10.1146/annurev.immunol.021908.132641
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Van Eck, N. J., & Waltman, L. (2014). Visualizing Bibliometric Networks. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring Scholarly Impact (pp. 285–320). Springer International Publishing. https://doi.org/10.1007/978-3-319-10377-8_13
Vargas-Quesada, B., Chinchilla-Rodríguez, Z., & Rodriguez, N. (2017). Identification and Visualization of the Intellectual Structure in Graphene Research. Frontiers in Research Metrics and Analytics, 2, 7. https://doi.org/10.3389/frma.2017.00007
Vogl, S., Picker, P., Mihaly-Bison, J., Fakhrudin, N., Atanasov, A. G., Heiss, E. H., Wawrosch, C., Reznicek, G., Dirsch, V. M., Saukel, J., & Kopp, B. (2013). Ethnopharmacological in vitro studies on Austria’s folk medicine—An unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. Journal of Ethnopharmacology, 149(3), 750–771. https://doi.org/10.1016/j.jep.2013.06.007
Wang, A., Xiao, Z., Zhou, L., Zhang, J., Li, X., & He, Q. (2016). The protective effect of atractylenolide I on systemic inflammation in the mouse model of sepsis created by cecal ligation and puncture. Pharmaceutical Biology, 54(1), 146–150. https://doi.org/10.3109/13880209.2015.1024330
Wang, H., Dong, H.-Y., Liu, Y.-F., Liang, J.-L., Liu, H.-S., Zhao, Q.-S., & Wei, P.-H. (2022). Iridoid Glycosides and Flavonoids Isolated from the Twigs and Leaves of Callicarpa nudiflora and Their Anti-Inflammatory Activities. Chemistry and Biodiversity, 19(12). Scopus. https://doi.org/10.1002/cbdv.202200993
Wang, L., Lu, S., Wang, L., Xin, M., Xu, Y., Wang, G., Chen, D., Chen, L., Liu, S., & Zhao, F. (2021). Anti-inflammatory effects of three withanolides isolated from Physalis angulata L. in LPS-activated RAW 264.7 cells through blocking NF-κB signaling pathway. Journal of Ethnopharmacology, 276, 114186. https://doi.org/10.1016/j.jep.2021.114186
Wang, S.-L., Hwang, T.-L., Chung, M.-I., Sung, P.-J., Shu, C.-W., Cheng, M.-J., & Chen, J.-J. (2015). New flavones, a 2-(2-phenylethyl)-4H-chromen-4-one derivative, and anti-inflammatory constituents from the stem barks of Aquilaria sinensis. Molecules, 20(11), 20912–20925. Scopus. https://doi.org/10.3390/molecules201119736
Wu, L.-C., Fan, N.-C., Lin, M.-H., Chu, I.-R., Huang, S.-J., Hu, C.-Y., & Han, S.-Y. (2008). Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators. Journal of Agricultural and Food Chemistry, 56(7), 2341–2349. Scopus. https://doi.org/10.1021/jf073057e
Wu, P., Song, Z., Li, Y., Wang, H., Zhang, H., Bao, J., Li, Y., Cui, J., Jin, D.-Q., Wang, A., Liang, B., Lee, D., Xu, J., & Guo, Y. (2020). Natural iridoids from Patrinia heterophylla showing anti-inflammatory activities in vitro and in vivo. Bioorganic Chemistry, 104. Scopus. https://doi.org/10.1016/j.bioorg.2020.104331
Xie, J., Sha, T., Tian, W., Wu, L., Chen, J., Huang, J., Xia, Z., Liu, K., Sun, P., Fan, H., Wang, W., & Zheng, J. (2023). Anti-inflammatory Activity of Total Alkaloids in Nelumbo nucifera and Simultaneous Determination of Major Bisbenzylisoquinolines. Revista Brasileira de Farmacognosia, 33(2), 353–363. Scopus. https://doi.org/10.1007/s43450-023-00373-y
Yang, G.-X., Zhang, R.-Z., Lou, B., Cheng, K.-J., Xiong, J., & Hu, J.-F. (2014). Chemical constituents from Melastoma dodecandrum and their inhibitory activity on interleukin-8 production in HT-29 cells. Natural Product Research, 28(17), 1383–1387. Scopus. https://doi.org/10.1080/14786419.2014.903480
Yu, Y., Li, Y., Zhang, Z., Gu, Z., Zhong, H., Zha, Q., Yang, L., Zhu, C., & Chen, E. (2020). A bibliometric analysis using VOSviewer of publications on COVID-19. Annals of Translational Medicine, 8(13), 816–816. https://doi.org/10.21037/atm-20-4235
Yuan, H.-L., Zhao, Y.-L., Ding, C.-F., Zhu, P.-F., Jin, Q., Liu, Y.-P., Ding, Z.-T., & Luo, X.-D. (2020). Anti-inflammatory and antinociceptive effects of Curcuma kwangsiensis and its bioactive terpenoids in vivo and in vitro. Journal of Ethnopharmacology, 259. Scopus. https://doi.org/10.1016/j.jep.2020.112935
Yuan, H.-L., Zhao, Y.-L., Qin, X.-J., Liu, Y.-P., Yang, X.-W., & Luo, X.-D. (2021). Diverse isoquinolines with anti-inflammatory and analgesic bioactivities from Hypecoum erectum. Journal of Ethnopharmacology, 270, 113811. https://doi.org/10.1016/j.jep.2021.113811
Zhang, D., Zhang, Z., & Managi, S. (2019). A bibliometric analysis on green finance: Current status, development, and future directions. Finance Research Letters, 29, 425–430. https://doi.org/10.1016/j.frl.2019.02.003
Zhang, J., Yu, Q., Zheng, F., Long, C., Lu, Z., & Duan, Z. (2016). Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. Journal of the Association for Information Science and Technology, 67(4), 967–972. https://doi.org/10.1002/asi.23437
Zhang, M., Chen, M., Hou, Y., Fan, C., Wei, H., Shi, L., Ma, G., & Zhang, J. (2021). Inflammatory and cytotoxic activities of abietane terpenoids from nepeta bracteata benth. Molecules, 26(18). Scopus. https://doi.org/10.3390/molecules26185603
Zhang, Y., Wang, K., Chen, H., He, R., Cai, R., Li, J., Zhou, D., Liu, W., Huang, X., Yang, R., Deng, S., Li, J., & Guan, X. (2018). Anti-inflammatory lignans and phenylethanoid glycosides from the root of Isodon ternifolius (D.Don) Kudô. Phytochemistry, 153, 36–47. Scopus. https://doi.org/10.1016/j.phytochem.2018.05.017
Zhuang, X.-C., Zhang, Y.-L., Chen, G.-L., Liu, Y., Hu, X.-L., Li, N., Wu, J.-L., & Guo, M.-Q. (2021). Identification of anti-inflammatory and anti-proliferative neolignanamides from Warburgia Ugandensis employing multi-target affinity ultrafiltration and LC-MS. Pharmaceuticals, 14(4). Scopus. https://doi.org/10.3390/ph14040313
Zou, Y., Lv, Y., Peng, X., Tong, S., & Chu, C. (2023). A novel strategy by combining “magnified” matrix solid phase dispersion extraction with high-speed countercurrent chromatography for the rapid and efficient isolation of flavonoids isomers with anti-inflammatory effect from Lindera aggregata (Sims) Kosterm Leaves. Sustainable Chemistry and Pharmacy, 33, 101073. https://doi.org/10.1016/j.scp.2023.101073
Zou, Y.-H., Zhao, L., Xu, Y.-K., Bao, J.-M., Liu, X., Zhang, J.-S., Li, W., Ahmed, A., Yin, S., & Tang, G.-H. (2018). Anti-inflammatory sesquiterpenoids from the Traditional Chinese Medicine Salvia plebeia: Regulates pro-inflammatory mediators through inhibition of NF-κB and Erk1/2 signaling pathways in LPS-induced Raw264.7 cells. Journal of Ethnopharmacology, 210, 95–106. Scopus. https://doi.org/10.1016/j.jep.2017.08.034
Published
2024-10-03
How to Cite
Fakhrudin, N. (2024). Review and bibliometric analysis of research on herbal medicine for inflammation between 2004 and 2023. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.12140
Section
Review Article

Most read articles by the same author(s)