Radiolabelling and In Silico Evaluation of 131I-Pentagamavunone-0 for Therapeutic and Diagnostic Compounds

  • ⁠Muhamad Basit Febrian Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Building 71, Kawasan Puspiptek, Setu, Tangerang Selatan, Banten 15310, Indonesia https://orcid.org/0000-0001-8680-0479
  • Miftakul Munir 1. Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Building 71, Kawasan Puspiptek, Setu, Tangerang Selatan, Banten 15310, Indonesia. https://orcid.org/0000-0001-8109-6806
  • Rohmad Yudi Utomo Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia https://orcid.org/0000-0003-4803-9417
  • ⁠Alfian Mahardika Forentin Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Building 71, Kawasan Puspiptek, Setu, Tangerang Selatan, Banten 15310, Indonesia. https://orcid.org/0000-0003-2338-6172
  • Arni Aries Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Building 71, Kawasan Puspiptek, Setu, Tangerang Selatan, Banten 15310, Indonesia; Research Collaboration Center for Theranostic Radiopharmaceuticals, Jl Ir. Soekarno KM 21, Jatinangor 45363, Indonesia https://orcid.org/0000-0001-9360-9648
  • Herlan Setiawan Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Building 71, Kawasan Puspiptek, Setu, Tangerang Selatan, Banten 15310, Indonesia. https://orcid.org/0000-0001-8428-2030
  • Ahsanal Fikri Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Building 71, Kawasan Puspiptek, Setu, Tangerang Selatan, Banten 15310, Indonesia. https://orcid.org/0000-0002-2406-1356
  • Sumandi Juliyanto Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Building 71, Kawasan Puspiptek, Setu, Tangerang Selatan, Banten 15310, Indonesia https://orcid.org/0000-0003-4405-4572
  • Ratna Asmah Susidarti Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia https://orcid.org/0000-0002-0973-441X
  • Muthi' Ikawati Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia https://orcid.org/0000-0002-5968-0130
  • Mukh Syaifudin Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency (BRIN), Building 71, Kawasan Puspiptek, Setu, Tangerang Selatan, Banten 15310, Indonesia
  • Edy Meiyanto Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia https://orcid.org/0000-0002-0886-6322
Keywords: curcumin, PGV-0, radiolabelling, TLC, radiochemical purity, molecular docking

Abstract

Cancer is the most common cause of death, with the burden increasing in recent years. Conventional treatments have caused cancer cells’ resistance to drugs. Therefore, it is crucial to develop a radio-labeled theranostic compound such as penta-gamma-vunone (PGV), which significantly suppresses cancer cell growth. In this experiment, the synthesis of [131I]I-PGV-0 compound was done by using the standard Chloramine-T (CT) iodination method with some parameter optimizations, such as the quantity of CT oxidizer and sodium metabisulfite reducing agent, time and temperature of reaction. The radiochemical purity of these compounds was determined using thin layer chromatography (TLC) analysis, and the stability of the radiolabeled compound was also assessed in HBSS medium. Results showed that the highest radiochemical purity (RCP) of [131I]I-PGV-0 (99.83%) was obtained at the CT amount of 25 µg. Stability study revealed that, at the high RCP, this compound was stable for 16 days in cold storage. Molecular docking studies indicated that the radioiodination of PGV-0 enhances binding affinity by interacting with crucial amino acids within the kinase domains of EGFR, HER2, AURKA, and PLK-1.

References

Amin, A., Soliman, S., El-Aziz, H., El-Enein, S., 2013. Radioiodination of Zaleplon and Its in-vivo Biologic Behavior in Mice: An Imaging Probe for Brain. Int. J. Chem. 6, p17. https://doi.org/10.5539/ijc.v6n1p17
Angraini, S.M., Nugraheni, N., Meiyanto, E., Hermawan, A., 2019. Analog Curcumin, Pentagamavunon-0 (PGV-0), Induces Senescence and Increases Cytotoxic Effect of Doxorubicin on HCC 1954 Cells. Indones. J. Cancer Chemoprevent. 10, 114–121. https://doi.org/10.14499/indonesianjcanchemoprev10iss3pp114-121
Brito, A.F., Abrantes, A.M., Teixo, R., Pires, A.S., Ribeiro, A.C., Ferreira, R.F., Mascarenhas, A., Puga, T., Laranjo, M., Caramelo, F., Boin, I., Jefferson, D.M., Gonçalves, C., Martins, R., Tavares, I., Ribeiro, I.P., Sarmento-Ribeiro, A.B., Carreira, I.M., Souza, D., Tralhão, J.G., Botelho, M.F., 2020. Iodine‑131 metabolic radiotherapy leads to cell death and genomic alterations through NIS overexpression on cholangiocarcinoma. Int. J. Oncol. 56, 709–727. https://doi.org/10.3892/ijo.2020.4957
Cavina, L., van der Born, D., Klaren, P.H.M., Feiters, M.C., Boerman, O.C., Rutjes, F.P.J.T., 2017. Design of Radioiodinated Pharmaceuticals: Structural Features Affecting Metabolic Stability towards in Vivo Deiodination. Eur. J. Org. Chem. 2017, 3387–3414. https://doi.org/10.1002/ejoc.201601638
Chaidir, P., Daya, A.S., Indra, S., Fany, T., Ahid, N., Fernanto, R., Herlan, S., Anung, P., 2022. Scaled-up production of 131 I radioisotope using dry distilation method for radiopharmaceutical application. J. Phys.: Conf. Ser. 2193, 012020. https://doi.org/10.1088/1742-6596/2193/1/012020
Da’i, M., Suhendi, A., Meiyanto, E., Jenie, U.A., Kawaichi, M., 2017. Apoptosis Induction Effect of Curcumin and its Analogs Pentagamavunon-0 and Pentagamavunon-1 on Cancer Cell Lines. Asian J. Pharm. Clin. Res. 373–376. https://doi.org/10.22159/ajpcr.2017.v10i3.16311
Daruwati, I., Christina, M.P., Perdana, W.W., Hakiki, N.W., Oekar, N.K., 2014. Effect of EDTA and PYP as co-ligand of Radiolabeled Nanomaterial M41S-NH2 for Radiosynovectomy. AMR 896, 687–694. https://doi.org/10.4028/www.scientific.net/AMR.896.687
de Oliveira, I.M., Martins, P. de A., Lima, A.S., Pujatti, P.B., Fukumori, N.T.O., Matsuda, M.M.N., 2011. Alternative Methods For Radiochemical Purity Testing In Radiopharmaceuticals. Proceeding of International Nuclear Atlantic Conference. Belo Horizonte, MG, Brazil, October 24-28, 2011
Eychenne, R., Alliot, C., Gestin, J.-F., Guérard, F., 2022. Radiolabeling chemistry with heavy halogens iodine and astatine, in: Signore, A. (Ed.), Nuclear Medicine and Molecular Imaging. Elsevier, Oxford, pp. 121–132. https://doi.org/10.1016/B978-0-12-822960-6.00013-2
Flieger, J., Tatarczak, M., 2008. Influence of Inorganic Mobile Phase Additives on the Retention and Separation Efficiency of Selected Amino Acids in Thin-Layer Chromatography on Cellulose Layers. J Chromatogr Sci, 46, 565–573. https://doi.org/10.1093/chromsci/46.6.565
Flory, S., Benz, A.-K., Frank, J., 2022. Uptake and time-dependent subcellular localization of native and micellar curcumin in intestinal cells. BioFactors 48, 897–907. https://doi.org/10.1002/biof.1828
Grabe, T., Lategahn, J., Rauh, D., 2018. C797S Resistance: The Undruggable EGFR Mutation in Non-Small Cell Lung Cancer? ACS Med. Chem. Lett. 9, 779–782. https://doi.org/10.1021/acsmedchemlett.8b00314
Ha, N.S., Sadeghi, S., Van Dam, R.M., 2017. Recent Progress toward Microfluidic Quality Control Testing of Radiopharmaceuticals. Micromachines 8, 337. https://doi.org/10.3390/mi8110337
Hadi, I., Jenie, R.I., Meiyanto, E., 2020. Pentagamavunon-0 (PGV-0) Enhance Cytotoxic Effect of Doxorubicin through Increasing of Apoptosis, Senescence and ROS Level on Triple Negative Breast Cancer 4T1. Indones. J. Cancer Chemoprevent. 11, 7–15. https://doi.org/10.14499/indonesianjcanchemoprev11iss1pp7-15
Hasbiyani, N.A.F., Wulandari, F., Nugroho, E.P., Hermawan, A., Meiyanto, E., 2021. Bioinformatics analysis confirms the target protein underlying mitotic catastrophe of 4T1 cells under combinatorial treatment of PGV-1 and galangin. Sci. Pharm. 89, 38.
Hermanson, G.T., 2013. Chapter 1 - Introduction to Bioconjugation, in: Hermanson, G.T. (Ed.), Bioconjugate Techniques (Third Edition). Academic Press, Boston, pp. 1–125. https://doi.org/10.1016/B978-0-12-382239-0.00001-7
Hermawan, A., Fitriasari, A., Junedi, S., Ikawati, M., Haryanti, S., Widaryanti, B., Da’i, M., Meiyanto, E., 2011. PGV-0 and PGV-1 Increased Apoptosis Induction of Doxorubicin on MCF-7 Breast Cancer Cells. Pharmacon 12, 55–59.
Holler, J.G., Renmælmo, B., Fjellaksel, R., 2022. Stability evaluation of [18F]FDG: literature study, stability studies from two different PET centres and future recommendations. EJNMMI Radiopharm. Chem. 7, 2. https://doi.org/10.1186/s41181-022-00154-3
Hvattum, E., Priebe, H., 2013. Deiodination of iodinated aromatic compounds with electrospray ionization mass spectrometry. Rapid Comm Mass Spectrometry 27, 2504–2514. https://doi.org/10.1002/rcm.6711
Ikawati, M., Septisetyani, E.P., 2018. Pentagamavunone-0 (PGV-0), a Curcumin Analog, Enhances Cytotoxicity of 5-Fluorouracil and Modulates Cell Cycle in WiDr Colon Cancer Cells. Indones. J. Cancer Chemoprevent. 9, 23–31. https://doi.org/10.14499/indonesianjcanchemoprev9iss1pp23-31
Jeon, J., 2019. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int. J. Mol. Sci. 20, 2323. https://doi.org/10.3390/ijms20092323
Jószai, I., Svidró, M., Pótári, N., 2019. Recommendations for selection of additives for stabilization of [18F]FDG. Appl Radiat Isot 146, 78–83. https://doi.org/10.1016/j.apradiso.2019.02.001
Joukov, V., De Nicolo, A., 2018. Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Sci. Signal. 11, eaar4195. https://doi.org/10.1126/scisignal.aar4195
Kabalka, G.W., Yao, M.-L., 2009. No-carrier-added radiohalogenations utilizing organoboranes: The synthesis of iodine-123 labeled curcumin. J Organomet Chem 694, 1638–1641. https://doi.org/10.1016/j.jorganchem.2008.11.040
Kumar, C., Subramanian, S., Samuel, G., 2016. Evaluation of Radioiodinated Curcumin for its Potential as a Tumor-targeting Radiopharmaceutical. J Radiat Cancer Res 7, 112. https://doi.org/10.4103/0973-0168.199309
Laferriere-Holloway, T.S., Rios, A., Carlucci, G., van Dam, R.M., 2022. Rapid Purification and Formulation of Radiopharmaceuticals via Thin-Layer Chromatography. Molecules 27, 8178. https://doi.org/10.3390/molecules27238178
Meiyanto, E., Husnaa, U., Kastian, R.F., Putri, H., Larasati, Y.A., Khumaira, A., Pamungkas, D.D.P., Jenie, R.I., Kawaichi, M., Lestari, B., Yokoyama, T., Kato, J., 2020. The Target Differences of Anti-Tumorigenesis Potential of Curcumin and its Analogues Against HER-2 Positive and Triple-Negative Breast Cancer Cells. Adv Pharm Bull 11, 188–196. https://doi.org/10.34172/apb.2021.020
Meiyanto, E., Putri, D.D.P., Susidarti, R.A., Murwanti, R., Sardjiman, S., Fitriasari, A., Husnaa, U., Purnomo, H., Kawaichi, M., 2014a. Curcumin and its Analogues (PGV-0 and PGV-1) Enhance Sensitivity of Resistant MCF-7 Cells to Doxorubicin through Inhibition of HER2 and NF-kB Activation. Asian Pac. J. Cancer Prev. 15, 179–184. https://doi.org/10.7314/APJCP.2014.15.1.179
Meiyanto, E., Putri, D.D.P., Susidarti, R.A., Murwanti, R., Sardjiman, S., Fitriasari, A., Husnaa, U., Purnomo, H., Kawaichi, M., 2014b. Curcumin and its Analogues (PGV-0 and PGV-1) Enhance Sensitivity of Resistant MCF-7 Cells to Doxorubicin through Inhibition of HER2 and NF-kB Activation. Asian Pac. J. Cancer Prev. 15, 179–184. https://doi.org/10.7314/APJCP.2014.15.1.179
Mounetou, E., Miot-Noirault, E., Gaudreault, R.C., Madelmont, J.C., 2010. N-4-iodophenyl-N′-2-chloroethylurea, a novel potential anticancer agent with colon-specific accumulation: radioiodination and comparative in vivo biodistribution profiles. Invest New Drugs 28, 124–131. https://doi.org/10.1007/s10637-009-9222-z
Muflikhasari, H.A., Jenie, R.I., Susidarti, R.A., Meiyanto, E., 2019. Growth Inhibitory Property of Pentagamavunone-0 (PGV-0) on 4T1 Cells under Stress Condition : 2D and 3D Culture Model. Indones. J. Cancer Chemoprevent 10, 149–158. https://doi.org/10.14499/indonesianjcanchemoprev10iss3pp149-158
Murwanti, R., Rahmadani, A., Ritmaleni, R., Hermawan, A., Sudarmanto, B.S.A., 2020. Curcumin Analogs Induce Apoptosis and G2/M Arrest In 4T1 Murine Triple-Negative Breast Cancer Cells. Indones. J. Pharm. 31, 11. https://doi.org/10.14499/indonesianjpharm31iss1pp11
Mushtaq, S., Jeon, J., Shaheen, A., Jang, B.S., Park, S.H., 2016. Critical analysis of radioiodination techniques for micro and macro organic molecules. J Radioanal Nucl Chem 309, 859–889. https://doi.org/10.1007/s10967-015-4679-z
Petrov, S.A., Yusubov, M.S., Beloglazkina, E.K., Nenajdenko, V.G., 2022. Synthesis of Radioiodinated Compounds. Classical Approaches and Achievements of Recent Years. Int. J. Mol. Sci. 23, 13789. https://doi.org/10.3390/ijms232213789
Ramdhani, D., Widyasari, E.M., Sriyani, M.E., Arnanda, Q.P., Watabe, H., 2020. Iodine-131 labeled genistein as a potential radiotracer for breast cancer. Heliyon 6, e04780. https://doi.org/10.1016/j.heliyon.2020.e04780
Ryu, E.K., Choe, Y.S., Lee, K.-H., Choi, Y., Kim, B.-T., 2006. Curcumin and Dehydrozingerone Derivatives:  Synthesis, Radiolabeling, and Evaluation for β-Amyloid Plaque Imaging†. J. Med. Chem. 49, 6111–6119. https://doi.org/10.1021/jm0607193
Sardjiman, S.S., Reksohadiprodjo, M.S., Hakim, L., van der Goot, H., Timmerman, H., 1997. 1,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship. Eur. J. Med. Chem. 32, 625–630. https://doi.org/10.1016/S0223-5234(97)83288-6
Seevers, R.H., Counsell, R.E., 1982. Radioiodination techniques for small organic molecules. Chem. Rev. 82, 575–590. https://doi.org/10.1021/cr00052a002
Suresh, M.V., Wagner, M.C., Rosania, G.R., Stringer, K.A., Min, K.A., Risler, L., Shen, D.D., Georges, G.E., Reddy, A.T., Parkkinen, J., Reddy, R.C., 2012. Pulmonary Administration of a Water-Soluble Curcumin Complex Reduces Severity of Acute Lung Injury. Am J Respir Cell Mol Biol 47, 280–287. https://doi.org/10.1165/rcmb.2011-0175OC
Utomo, R.Y., Wulandari, F., Novitasari, D., Lestari, B., Susidarti, R.A., Jenie, R.I., Kato, J., Sardjiman, S., Meiyanto, E., 2021. Preparation and Cytotoxic Evaluation of PGV-1 Derivative, CCA-1.1, as a New Curcumin Analog with Improved-Physicochemical and Pharmacological Properties. Adv Pharm Bull 12, 603–612. https://doi.org/10.34172/apb.2022.063
Wang, J., Rios, A., Lisova, K., Slavik, R., Chatziioannou, A.F., van Dam, R.M., 2020. High-throughput radio-TLC analysis. Nucl. Med. Biol. 82–83, 41–48. https://doi.org/10.1016/j.nucmedbio.2019.12.003
Wongso, H., 2022. Natural product-based radiopharmaceuticals: Focus on curcumin and its analogs, flavonoids, and marine peptides. J. Pharm. Anal. 12, 380–393. https://doi.org/10.1016/j.jpha.2021.07.006
Wulandari, W., Ikawati, M., Meiyanto, E., 2020. The potency of Pentagamavunone‐0 (PGV‐0) as chemopreventive agent for the formation and growth of breast cancer as revealed in 3D model. Indones. J. Biotechnol. 25, 21–27. https://doi.org/10.22146/ijbiotech.51759
Yu, C., Wang, X., Wu, C., Zou, C., Wu, J., Cai, X., Chen, J., 2020. Supply of I-131 in a 2 MW molten salt reactor with different production methods. Appl. Radiat. Isot. 166, 109350. https://doi.org/10.1016/j.apradiso.2020.109350
Yuwono, T., Oetari, R.A., 2005. The stability of PGV-0 (Pentagamavunon-0) as an Antiinflammatory drug in liquid dosage forms. Indones. J. Pharm. 0, 20–25. https://doi.org/10.14499/indonesianjpharm0iss0pp20-25
Published
2024-08-26
How to Cite
Febrian⁠. B., Munir, M., Utomo, R. Y., Forentin⁠. M., Aries, A., Setiawan, H., Fikri, A., Juliyanto, S., Susidarti, R. A., Ikawati, M., Syaifudin, M., & Meiyanto, E. (2024). Radiolabelling and In Silico Evaluation of 131I-Pentagamavunone-0 for Therapeutic and Diagnostic Compounds. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.12122
Section
Research Article