Identification of The Secondary Metabolite Derived from Aaptos spp. and its Antibacterial Activity

  • Setyowati Triastuti Utami Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Centre for Biomedical Research, National Research and Innovation Agency (BRIN), Bogor, Indonesia
  • Nabila Syahida Prajna Paramita Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
  • Khusnul Agustina Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
  • Faiqoh Nur Maulidia Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
  • Muhammad Bagas Prayoga Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
  • Aji Nugroho Centre for National Marine Protected Area (BKKPN), Kupang, Ministry for Marine Affairs and Fisheries
  • Niar Gusnaniar Centre for Biomedical Research, National Research and Innovation Agency (BRIN), Bogor, Indonesia
  • Eko Wahyu Putro Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
  • Ira Handayani Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
  • Djoko Santosa Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Cintya Nurul Apsari Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Akhirta Atikana Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
Keywords: Aaptos, secondary metabolites, sponge, alkaloid, antimicrobial

Abstract

Many novel bioactive compounds have been found to be most abundantly produced by sponges. Over the years, Indonesian sponges have played an important role in expanding our understanding of chemical diversity and biological activity. Among those sponges, the sponge genus Aaptos has been shown to have antimicrobial activity. Antimicrobial resistance and the spread of infections in the immunocompromised population have all contributed to an increase in the appearance and severity of these infections in recent decades. Finding an alternative antimicrobial drug from marine secondary metabolites will be beneficial. The current study looks into the profile of bioactive compounds derived from the sponge Aaptos. The sponge was collected from Raja Ampat Island, Indonesia. This sample was extracted with ethanol and an ethyl acetate-methanol solvent. Furthermore, Thin Layer Chromatography (TLC), High-performance liquid chromatography with diode-array detection (HPLC-DAD) and Principal Component Analysis (PCA) were used to map the secondary metabolite related to antimicrobial activity in both extracts. TLC profiling revealed potential alkaloid and terpenoid compounds from both ethanol extract and ethyl acetate-methanol. The HPLC-DAD and PCA results revealed that one of the ethanol crude extracts had a similar profile to Ciprofloxacin, Chloramphenicol, and Ampicillin. These antibacterial profiles open up new research avenues, with the ultimate goal of contributing to the development of new and effective antimicrobial drugs. This research also helps with the bioprospecting of marine sponges from Indonesian sea water.

Author Biography

Nabila Syahida Prajna Paramita, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Research Centre for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia

References

Abdi, H., & Williams, L. J. (2010a). Principal component analysis. Wiley interdisciplinary reviews: computational statistics. Wiley Interdisplinary Reviews: Computational Statistics, 1–47.
Arai, M., Han, C., Yamano, Y., Setiawan, A., & Kobayashi, M. (2014). Aaptamines, marine spongean alkaloids, as anti-dormant mycobacterial substances. Journal of Natural Medicines, 68(2), 372–376. https://doi.org/10.1007/s11418-013-0811-y
Blunt JW., Carroll AR., Copp BR et al. Marine natural products. Nat Prod Rep. 2018;35(1):8-53.doi:10.1039/C7NP00052A
Choudhary A., Naughton L.M., Montánchez I., Dobson A.D.W., Rai D.K. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar. Drugs. 2017;15: 272. doi: 10.3390/md15090272.
Corinaldesi C., Barone G., Marcellini F., Dell’Anno A., Danovaro R. Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Mar. Drugs. 2017;15: 118. doi: 10.3390/md15040118.
De Goeij, J. M., Van Oevelen, D., Vermeij, M. J. A., Osinga, R., Middelburg, J. J., De Goeij, A. F. P. M., & Admiraal, W. (2013). Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science, 342(6154), 108–110. https://doi.org/10.1126/science.1241981
Ebada, S. S., Edrada, R. A., Lin, W., & Proksch, P. (2008). Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nature Protocols, 3(12), 1820–1831. https://doi.org/10.1038/nprot.2008.182
ECDC European Centre for Disease Prevention and Control. (2022). Antimicrobial resistance surveillance in Europe 2022 – 2020 data. Europe and the European Centre for Disease Prevention and Control. https://doi.org/doi:10.2900/112339
Fick, J., Ph, D., Andersson, P. L., Ph, D., Johansson, M., & Ph, D. (2004). Selection of Antibiotics: A Chemometric Approach. Method. 4th International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water, 9, 143–150.
Harborne, A. J. (1998). Phytochemical methods a guide to modern techniques of plant analysis. In Ethnoveterinary Botanical Medicine. springer science & business media. https://doi.org/10.1201/ebk1420045604-8
He, Q., Miao, S., Ni, N., Man, Y., & Gong, K. (2020). A Review of the Secondary Metabolites From the Marine Sponges of the Genus Aaptos. Natural Product Communications, 15(9). https://doi.org/10.1177/1934578X20951439
Izzati, F., Warsito, M. F., Bayu, A., Prasetyoputri, A., Atikana, A., Sukmarini, L., Rahmawati, S. I., & Putra, M. Y. (2021). Chemical diversity and biological activity of secondary metabolites isolated from indonesian marine invertebrates. Molecules, 26(7). https://doi.org/10.3390/molecules26071898
Mien, P. T., Ha, D. V., Ben, H. X., Chen, B., Liu, L., & Minh-Thu, P. (2020). Antimicrobial activities of sponge-derived microorganisms from coastal waters of central Vietnam. Journal of Marine Science and Engineering, 8(8). https://doi.org/10.3390/JMSE8080594
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Othman, L., Sleiman, A., & Abdel-Massih, R. M. (2019). Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Frontiers in Microbiology, 10(MAY). https://doi.org/10.3389/fmicb.2019.00911
Parama Cita, Y., Kamal Muzaki, F., Radjasa, O. K., & Sudarmono, P. (2017). Screening of Antimicrobial Activity of Sponges Extract from Pasir Putih, East Java (Indonesia). Journal of Marine Science: Research & Development, 07(05). https://doi.org/10.4172/2155-9910.1000237
Perera, W. H., Meepagala, K. M., Fronczek, F. R., Cook, D. D., Wedge, D. E., & Duke, S. O. (2019). Bioassay-Guided Isolation and Structure Elucidation of Fungicidal and Herbicidal Compounds from Ambrosia salsola (Asteraceae). Molecules, 24(5). https://doi.org/10.3390/molecules24050835
Pham, C. D., Hartmann, R., Müller, W. E. G., De Voogd, N., Lai, D., & Proksch, P. (2013). Aaptamine derivatives from the indonesian sponge Aaptos suberitoides. Journal of Natural Products, 76(1), 103–106. https://doi.org/10.1021/np300794b
Rajan, M. S. (2014). Bioprospecting of Novel Potent Anticancer Metabolites From Chosen Marine Sponges Doctor of Philosophy.
Rajivgandhi, G., kumar, S. N., Ramachandran, G., & Manoharan, N. (2019). Marine sponge alkaloid aaptamine enhances the anti-bacterial and anti-cancer activity against ESBL producing Gram negative bacteria and HepG 2 human liver carcinoma cells. Biocatalysis and Agricultural Biotechnology, 17, 628–637. https://doi.org/https://doi.org/10.1016/j.bcab.2019.01.007
Riyadi, E., Andarwulan, N., Didah, D., & Faridah, N. (2014). Profil Senyawa Volatil Identitas Nutmeg Oil, Patchouli Oil dan Fresh Ginger Oil Asal Indonesia The Volatile Compounds Profile as Identity for Nutmeg Oil, Patchouli Oil and Fresh Ginger Oil from Indonesia 1. Jurnal Mutu Pangan, 1(1), 19–25.
Rohde, S., & Schupp, P. J. (2011). Allocation of chemical and structural defenses in the sponge Melophlus sarasinorum. Journal of Experimental Marine Biology and Ecology, 399(1), 76–83. https://doi.org/10.1016/j.jembe.2011.01.012
Rosmiati, R., Mohamad, H., Muhammad, T. S. T., Musa, N., Ahmad, A., Ismail, N., Mohamad, F., & Nurhidayah, N. (2011). In vitro antagonistic activities of Indonesian marine sponge aaptos aaptos, and callyspongia pseudoreticulata extracts and their toxicity against Vibrio spp. Indonesian Aquaculture Journal, 6(2), 173. https://doi.org/10.15578/iaj.6.2.2011.173-182
Rosmiati, R., Parenrengi, A., & Suryati, E. (2015). Marine sponge Aaptos suberitoides, it’s potential source of natural antibacterial for controlling Vibrio harveyi on tigershrimp (Penaeus monodon) culture. Indonesian Aquaculture Journal, 10(1), 33. https://doi.org/10.15578/iaj.10.1.2015.33-40
Sarker, S. D., & Nahar, L. (2012). An introduction to natural products isolation. Methods in Molecular Biology, 864, 1–25. https://doi.org/10.1007/978-1- 61779-624-1_1
Setiawan, E., Nurhayati, A. P. D., & Muzaki, F. K. (2009). Sponge Diversity at Pecaron Bay Situbondo Based on Macroscopic and Microscopic Observation. IPTEK The Journal for Technology and Science, 20(4), 136– 140. https://doi.org/10.12962/j20882033.v20i4.20
Simister, R., Taylor, M. W., Tsai, P., & Webster, N. (2012). Sponge-Microbe Associations Survive High Nutrients and Temperatures. PLoS ONE, 7(12), 21–23. https://doi.org/10.1371/journal.pone.0052220
Sipkema, D., Franssen, M. C. R., Osinga, R., Tramper, J., & Wijffels, R. H. (2005). Marine sponges as pharmacy. Marine Biotechnology, 7(3), 142–162. https://doi.org/10.1007/s10126-004-0405-5
Van Soest, R. W. M. (1989). The Indonesian sponge fauna: A status report. Netherlands Journal of Sea Research, 23(2), 223–230. https://doi.org/10.1016/0077-7579(89)90016-1
Wagner, H., & Bladt, S. (1996). Plant Drug Analysis, A Thin Layer Chromatography Atlas (Second Edi). Springer Science & Business Media.
Published
2024-06-10
How to Cite
Utami, S. T., Paramita, N. S. P., Agustina, K., Maulidia, F. N., Prayoga, M. B., Nugroho, A., Gusnaniar, N., Putro, E. W., Handayani, I., Santosa, D., Apsari, C. N., & Atikana , A. (2024). Identification of The Secondary Metabolite Derived from Aaptos spp. and its Antibacterial Activity. Indonesian Journal of Pharmacy, 35(2), 325–339. https://doi.org/10.22146/ijp.11409
Section
Research Article