The Indonesian Version of the Online Learning Motivated Attention and Regulatory Strategies (OL-MARS v.2) Scale

https://doi.org/10.22146/jpsi.94747

Suriati Abdul Gani(1*), F. Danardana Murwani(2), Imanuel Hitipeuw(3), Carolina L. Radjah(4)

(1) Moffat Bible College, Kijabe, Kenya
(2) Faculty of Economics and Business, State University of Malang
(3) Faculty of Psychology, Universitas Negeri Malang
(4) Faculty of Psychology, Universitas Negeri Malang
(*) Corresponding Author

Abstract


The increasing use of ICT and the tendency for media multitasking among students have raised concerns about their negative impact on attention and the challenges they pose to regulation strategies. This study aimed to adapt and validate the Indonesian version of the Online Learning Motivated Attention and Regulatory Strategies (OL-MARS v.2) scale among undergraduate university students. The OL-MARS v.2 is a 24-item scale measuring two main constructs: perceived attention problems (PAP) and self-regulatory strategies (SRS). PAP includes three subscales: perceived attention discontinuity (PAD), lingering thoughts (LT), and social media notifications (SMN), while SRS comprises behavioral strategies (BS) and outcome appraisal (OA). The scale was administered to 1,360 undergraduate students at a private university in Indonesia. Alpha coefficients for the total scores ranged from 0.463 to 0.800, indicating overall good to acceptable reliability, although the LT subscale showed the lowest alpha (0.463), which was acceptable but not ideal. Confirmatory factor analysis (CFA) was performed to evaluate the model fit. The OL-MARS v.2 shows potential as a valuable tool for assessing students' attention states and self-regulation strategies in online learning environments.


Keywords


attention states; media multitasking; OL-MARS v.2; regulation strategies; reliability and validity

Full Text:

PDF


References

Andrade, C. (2019). The P Value and Statistical significance: Misunderstandings, explanations, challenges, and Alternatives. Indian Journal of Psychological Medicine, 41(3), 210. https://doi.org/10.4103/ijpsym.ijpsym_193_19

APJII. (2024, February 7). Pengguna Internet di Indonesia Meningkat di 2024. [Internet Users in Indonesia Will Increase in 2024.] Survei Internet APJII (Asosiasi Penyelenggara Jasa Internet Indonesia) 2024. Retrieved March 9, 2024, from
https://apjii.or.id/berita/d/pengguna-internet-di-indonesia-meningkat-di-2024

BBC News Indonesia. (2018, December 11). Pelajar Indonesia jadi salah satu pengguna
teknologi tertinggi di dunia
. [Indonesian students are one of the highest technology
users in the world
.] Retrieved March 9, 2024, from: https://www.bbc.com/
indonesia/majalah-46500293

Behr, D. (2017). Assessing the use of back translation: the shortcomings of back
translation as a quality testing method. International Journal of Social Research
Methodology, 20(6), 573–584. https://doi.org/10.1080/13645579.2016.1252188

Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach’s alpha. BMJ, 314(7080),
572–572. https://doi.org/10.1136/bmj.314.7080.572

Brislin, R. W. (1970). Back-Translation for Cross-Cultural Research. Journal of Cross-
Cultural Psychology, 1(3), 185–216. https://doi.org/10.1177/135910457000100301

Carrier, L. M., Rosen, L. D., Cheever, N. A., & Lim, A. F. (2015). Causes, effects, and
practicalities of everyday multitasking. Developmental Review, 35, 64–78.
https://doi.org/10.1016/j.dr.2014.12.005

Castañeda, L., & Selwyn, N. (2018). More than tools? Making sense of the ongoing
digitizations of higher education. International Journal of Educational
Technology in Higher Education, 15(1), 22. https://doi.org/10.1186/s41239-018-
0109-y

Cataldo, I., Lepri, B., Neoh, M. J. Y., & Esposito, G. (2021). Social Media Usage and
Development of Psychiatric Disorders in Childhood and Adolescence: A
Review. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.508595

Cha, E., Kim, K. H., & Erlen, J. A. (2007). Translation of scales in cross‐cultural research:
issues and techniques. Journal of Advanced Nursing, 58(4), 386–395. https://doi.
org/10.1111/j.1365-2648.2007.04242.x

Cheung, G. W., Cooper-Thomas, H. D., Lau, R. S., & Wang, L. C. (2023). Reporting reliability, Convergent and Discriminant Validity with Structural Equation modeling: a Review and best-practice Recommendations. Asia Pacific Journal of Management, 1(1). https://doi.org/10.1007/s10490-023-09871-y

Choi, J., Kushner, K. E., Mill, J., & Lai, D. W. L. (2012). Understanding the Language,
the Culture, and the Experience: Translation in Cross-Cultural Research.
International Journal of Qualitative Methods, 11(5), 652–665. https://doi.org/
10.1177/160940691201100508

Cortina, J. (1993). What is coefficient alpha?: An examination of theory and
applications. Journal of Applied Psychology, 78, 98–104. Cudo, A., Kopiś, N., Francuz, P., Błachnio, A., Przepiórka, A., & Torój, M. (2019). The
Impact of Facebook Use and Facebook Intrusion on Cognitive Control: Effect in
Proactive and Reactive Control. Advances in Cognitive Psychology, 15(1), 63–
74. https://doi.org/10.5709/acp-0257-6

El‐Den, S., Schneider, C., Mirzaei, A., & Carter, S. (2020). How to measure a latent construct: Psychometric principles for the development and validation of measurement instruments. International Journal of Pharmacy Practice, 28(4), 326–336. https://doi.org/10.1111/ijpp.12600

Emerson, R. W. (2021). Convenience Sampling Revisited: Embracing Its Limitations
Through Thoughtful Study Design. Journal of Visual Impairment & Blindness,
115(1), 76-77. https://doi.org/10.1177/0145482X20987707

Fatmawati, E. (2017). Media Multitasking di era digital natives. Media Pustakawan,
24
(2), 6–15. https://doi.org/10.37014/medpus.v24i2.3

Finch, W. H. (2019). Using Fit Statistic Differences to Determine the Optimal Number of Factors to Retain in an Exploratory Factor Analysis. Educational and Psychological Measurement, 80(2), 217–241. https://doi.org/10.1177/0013164419865 769

Firth, J., Torous, J., Stubbs, B., Firth, J. A., Steiner, G. Z., Smith, L., Alvarez‐Jimenez, M., Gleeson, J., Vancampfort, D., Armitage, C. J., & Sarris, J. (2019). The “online
brain”: how the Internet may be changing our cognition. World Psychiatry,
18(2), 119–129. https://doi.org/10.1002/wps.20617

Gani, S. (2022). Media Multitasking, Online Learning, and Social Media Activities
among Adolescents. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 7(10),
425–435.

Golzar, J., Tajik, O., & Shagofah, N. (2022). Convenience Sampling. International Journal of Education and Language Studies, 1(2), 72-77. https://doi.org/10.22034/ijels. 2022. 162981

Goretzko, D., Siemund, K., & Sterner, P. (2024). Evaluating Model Fit of MeasurementModels in Confirmatory Factor Analysis. Educational and Psychological
Measurement
, 84(1), 123-144. https://doi.org/10.1177/00131644231163813

Groskurth, K., Bluemke, M., & Lechner, C. M. (2023). Why we need to abandon fixed cutoffs for goodness-of-fit indices: An extensive simulation and possible solutions. Behavior Research Methods, 56(4), 3891–3914. https://doi.org/10.3758/ s13428-023-02193-3

Hair, Tatham, Anderson, & Black. (1998). Multivariate Data Analysis [Review of Multi- variate Data analysis]. Prentice Hall.

Hair, J., Black, W., Babin, B., & Anderson, R. (2014). Multivariate Data Analysis, 7th Edn. New Jersey, NY: Pearson Educational.


Henderson, M., Selwyn, N., & Aston, R. (2017). What works and why? Student
perceptions of ‘useful’ digital technology in university teaching and learning.
Studies in Higher Education, 42(8), 1567–1579. https://doi.org/10.1080/03075079.

2015.1007946

Hinton, P., McMurray, I., & Brownlow, C. (2004). SPSS Explained. Routledge. https:// doi.org/10.4324/9780203642597

Hobart, J., & Cano, S. (2009). Improving the evaluation of therapeutic interventions in multiple sclerosis: the role of new psychometric methods. Health technology
assessment (Winchester, England)
, 13(12), iii–177. https://doi.org/10.3310/hta13120

Hooper, D., Coughlan, J. and Mullen, M. R. (2008). “Structural Equation Modelling: Guidelines for Determining Model Fit.” The Electronic Journal of Business Research Methods, Volume 6 Issue 1, pp. 53 – 60. www.ejbrm.com

Ishak, S., & Elgeka, H. W. S. (2023). Purchases decision-making inventory:
measurement validation in Indonesia. Jurnal Psikologi, 50(3), 283. https://doi.org/
10.22146/jpsi.74583

Jamil, N., Belkacem, A. N., & Lakas, A. (2023). On enhancing students’ cognitive
abilities in online learning using brain activity and eye movements. Education
and Information Technologies, 28(4), 4363–4397. https://doi.org/10.1007/s10639-
022-11372-2

Johnson, E. (2021). Cronbach’s Alpha. In: Volkmar, F.R. (eds) Encyclopedia of Autism Spectrum Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-91280-6_307

Johnson, M. W., & Sherlock, D. (2014). Beyond the Personal Learning Environment:
attachment and control in the classroom of the future. Interactive Learning
Environments, 22(2), 146–164. https://doi.org/10.1080/10494820.2012.745434

Jones, P. S., Lee, J. W., Phillips, L. R., Zhang, X. E., & Jaceldo, K. B. (2001). An
Adaptation of Brislin’s Translation Model for Cross-cultural Research. Nursing
Research, 50(5), 300–304. https://doi.org/10.1097/00006199-200109000-00008

Kenny, D. A. (2020). Measuring Model Fit [Review of Measuring Model Fit].
https://davidakenny.net/cm/fit.htm

Kompen, R. T. , E. P. , C. X. , A. M. , & M. J. M. (2019). Personal learning Environments based on Web 2.0 services in higher education. Telematics Informatics, 38, 194–206.

Kyndt, E., & Onghena, P. (2014). The Integration of Work and Learning: Tackling the Complexity with Structural Equation Modelling. Professional and Practice-Based Learning, 255–291. https://doi.org/10.1007/978-94-007-7012-6_14

le Roux, D. B., & Parry, D. A. (2017). In-lecture media use and academic performance: Does subject area matter? Computers in Human Behavior, 77, 86–94.
https://doi.org/10.1016/j.chb.2017.08.030

Lee, C.-C., Li, D., Arai, S., & Puntillo, K. (2009). Ensuring Cross-Cultural Equivalence in Translation of Research Consents and Clinical Documents. Journal of
Transcultural Nursing, 20(1), 77–82. https://doi.org/10.1177/1043659608325852

Maatuk, A. M., Elberkawi, E. K., Aljawarneh, S., Rashaideh, H., & Alharbi, H. (2022).
The COVID-19 pandemic and E-learning: challenges and opportunities from
the perspective of students and instructors. Journal of Computing in Higher
Education, 34(1), 21–38. https://doi.org/10.1007/s12528-021-09274-2

Malhotra, N. K., & Dash, S. (2016). Marketing research: An applied orientation. Pearson.

Moisala, M., Salmela, V., Hietajärvi, L., Salo, E., Carlson, S., Salonen, O., Lonka, K.,
Hakkarainen, K., Salmela-Aro, K., & Alho, K. (2016). Media multitasking is
associated with distractibility and increased prefrontal activity in adolescents
and young adults. NeuroImage, 134, 113–121. https://doi.org/10.1016/
j.neuroimage.2016.04.011

Natalya, L., & Purwanto, C. V. (2018). Exploratory and confirmatory factor analysis of the Academic Motivation Scale (AMS) - Bahasa Indonesia. Makara Human
Behavior Studies in Asia, 22(1), 29. https://doi.org/10.7454/hubs.asia.2130118

Newsom, J. (2023). Some Clarifications and Recommendations on Fit Indices [Review of Some Clarifications and Recommendations on Fit Indices]. https://web.pdx.edu/ ~newsomj semclass/ho_fit.pdf

Nikkhah, M., Heravi-Karimooi, M., Montazeri, A. et al. (2018). Psychometric properties the Iranian version of Older People’s Quality Of Life questionnaire
(OPQOL). Health Qual Life Outcomes 16, 174. https://doi.org/10.1186/s12955-018-
1002-z

Nunnally, J. C, and I. H. Bernstein. 1994. Psychometric Theory. New York, NY:
McGraw-Hill.

Ophir, E., Nass, C., & Wagner, A. D. (2009). Cognitive control in media multitaskers.
Proceedings of the National Academy of Sciences of the United States of America,
106
(37), 15583–15587. https://doi.org/10.1073/pnas.0903620106

Parry, D. A., le Roux, D. B., & Cornelissen, L. A. (2020). Managing in-lecture media use: the feasibility and value of a split-class policy. Journal of Computing in Higher
Education, 32(2), 261–281. https://doi.org/10.1007/s12528-019-09232-z

Prudon, P. (2015). Confirmatory Factor Analysis as a Tool in Research Using
Questionnaires: A Critique. Comprehensive Psychology, 4. https://doi.org/10.2466/
03.CP.4.10


Ranđelović, K., & Kostić, J. O. (2022). Boredom and online learning motivated attention and regulation strategies during COVID-19. Psychological Applications and
Trends
. https://doi.org/10.36315/2022inpact072


Sato, T., Inman, J., Politowicz, M. S., Chancey, E. T., & Yamani, Y. (2023). A Meta-
Analytic Approach to Investigating the Relationship Between Human-
Automation Trust and Attention Allocation. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, 67(1), 959–964. https://doi.org/10.
1177/21695067231194333

Selwyn, N., Hillman, T., Eynon, R., Ferreira, G., Knox, J., Macgilchrist, F., & Sancho-Gil, J. M. (2020). What’s next for Ed-Tech? Critical hopes and concerns for the 2020s.
Learning, Media and Technology, 45(1), 1–6. https://doi.org/10.1080/17439884.
2020.1694945

Serdyukov, P. (2017). Innovation in education: what works, what doesn’t, and what to do about it? Journal of Research in Innovative Teaching & Learning, 10(1), 4–33. https://doi.org/10.1108/JRIT-10-2016-0007

Shek, D. T. L., & Yu, L. (2014). Confirmatory factor analysis using AMOS: a demonstration. International Journal on Disability and Human Development, 13(2). https://doi.org/10.1515/ijdhd-2014-0305

Sijtsma, K. (2009). On the Use, the Misuse, and the Very Limited Usefulness of
Cronbach’s Alpha. Psychometrika 74, 107–120. https://doi.org/10.1007/s1136-008-
9101-0

Stratton, S. J. (2021). Population Research: Convenience Sampling Strategies. Prehospital and Disaster Medicine, 36(4), 373–374. doi:10.1017/S1049023X21000649

Suyatno, S., Pambudi, D. I., Wantini, W., Abdurrohim, A., & Mardati, A. (2022). The mediating role of meaning at work in promoting teacher commitment and reducing burnout. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022. 962163

Swami, V., Christophe Maïano, & Alexandre J.S. Morin. (2023). A guide to exploratory structural equation modeling (ESEM) and bifactor-ESEM in body image research. Body Image, 47, 101641–101641. https://doi.org/10.1016/j.bodyim.2023. 101641

Taber, K. S. (2018). The Use of Cronbach’s Alpha When Developing and Reporting
Research Instruments in Science Education. Research in Science Education,
48(6), 1273–1296. https://doi.org/10.1007/s11165-016-9602-2

Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International
Journal of Medical Education, 2, 53–55. https://doi.org/10.5116/ijme.4dfb.8dfd

Umar, J., & Nisa, Y. F. (2020). Uji Validitas Konstruk dengan CFA dan Pelaporannya [Review of Uji Validitas Konstruk dengan CFA dan Pelaporannya]. Jurnal Pengukuran Psikologi Dan Pendidikan Indonesia, 9(2), 1–11. http://dx.doi.org/10.15 408/jp3i.v9i2.XXXXX

van Laar, Saskia and Braeken, Johan (2021). "Understanding the Comparative Fit
Index: It's all about the base!" Practical Assessment, Research, and Evaluation:
Vol. 26, Article 26. Available at: https://scholarworks.umass.edu/pare/vol26/iss1
/26

Voinea, C., Vică, C., Mihailov, E., & Savulescu, J. (2020). The Internet as Cognitive
Enhancement. Science and Engineering Ethics, 26(4), 2345–2362. https://doi.org/
10.1007/s11948-020-00210-8

Waluyo, M. (2016). Mudah Cepat Tepat Penggunaan Tools Amos Dalam Aplikasi (SEM) [Review of Mudah Cepat Tepat Penggunaan Tools Amos Dalam Aplikasi (SEM)]. UPN “VETERAN” JATIM. https://core.ac.uk/download/pdf/43007241.pdf

Wilmer, H. H., Sherman, L. E., & Chein, J. M. (2017). Smartphones and Cognition: A
Review of Research Exploring the Links between Mobile Technology Habits
and Cognitive Functioning. Frontiers in Psychology, 8. https://doi.org/10.3389/
fpsyg.2017.00605

Wiradhany, W., & Nieuwenstein, M. R. (2017). Cognitive control in media multitaskers: Two replication studies and a meta-analysis. Attention, Perception, &
Psychophysics, 79
(8), 2620–2641. http://doi.org/10.3758/s13414-017-1408-4

Wu, J. Y., & Peng, Y.-C. (2017). The modality effect on reading literacy: perspectives
from students’ online reading habits, cognitive and metacognitive strategies,
and web navigation skills across regions. Interactive Learning Environments,
25(7), 859–876. https://doi.org/10.1080/10494820.2016.1224251

Wu, J.-Y. (2015). University students’ Motivated Attention and use of regulation
strategies on social media. Computers & Education, 89, 75–90.
https://doi.org/10.1016/j.compedu.2015.08.016

Wu, J.-Y. (2017). The indirect relationship of media multitasking self-efficacy on
learning performance within the personal learning environment: Implications
from the mechanism of perceived attention problems and self-regulation
strategies. Computers & Education, 106, 56–72. https://doi.org/10.1016/
j.compedu.2016.10.010

Wu, J.-Y., & Cheng, T. (2019). Who is better adapted in learning online within the
personal learning environment? Relating gender differences in cognitive
attention networks to digital distraction. Computers & Education, 128, 312–329.
https://doi.org/10.1016/j.compedu.2018.08.016



DOI: https://doi.org/10.22146/jpsi.94747

Article Metrics

Abstract views : 340 | views : 136

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Jurnal Psikologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Recent Issues

Buku 1 Buku 1 Buku 1 Buku 1 
Vol 51 Issue 1 (2024)
Page 1-119
 Vol 50 Issue 3 (2023)
Page 219-332
 Vol 50 Issue 2 (2023)
Page 125-218
 Vol 50 Issue 1 (2023)
Page 1-124
 

 

 


Published by Faculty of Psychology, Universitas Gadjah Mada, Indonesia Building D-6th, Floor No. D-606. Jl. Sosio Humaniora No. 1, Bulaksumur Yogyakarta, 55281
Email: jurnalpsikologi@ugm.ac.id
Phone/whatsApp: +6281125210175

Web
Analytics Made Easy - StatCounter View My Stats