The Use of the Partner Surveillance Scale in Instagram: Psychometric Evaluation Based on the Graded Response Model

https://doi.org/10.22146/jpsi.36860

Bambang Suryadi(1*), Muhammad Dwirifqi Kharisma Putra(2)

(1) Faculty of Psychology, UIN Syarif Hidayatullah Jakarta
(2) Faculty of Psychology, UIN Syarif Hidayatullah Jakarta
(*) Corresponding Author

Abstract


The use of social media, especially Instagram, has become an increasingly powerful form of daily activity. This social media affects the romantic relationship of people, where people in relationships can conduct surveillance on the behaviors of their partner. This study provides an analysis of the psychometric properties of the Indonesian version of the Partner Surveillance Scale which contains 15 items and used a 4-point Likert scale format. The study recruited 214 female university students aged 17-23 years old, who used Instagram. The Graded Response Model (GRM) method was applied. As a result, the Indonesian version of the Partner Surveillance Scale was proved to have good psychometrics properties and had good fit to the GRM. All assumptions of GRM were met and the scale had high reliability. But, it should be noted that some items did not fit well with the model.  The results of this study also provide an alternative to the use of Confirmatory Factor Analysis (CFA) in analyzing polytomous data with GRM. This study concluded that the psychometric properties of the Partner Surveillance Scale were good. 


Keywords


graded response model; Instagram; partner surveillance scale

Full Text:

PDF


References

Adams, R. J., Wu, M. L. & Wilson, M. (2012). The Rasch rating model and disordered threshold controversy. Educational and Psychological Measurement, 72(4), 547-573. doi: 10.1177/0013164411432166

AERA, APA, & NCME (American Educational Research Association, American Psychological Association, & National Council on Measurement in Education) Joint Committee on Standards for Educational and Psychological Testing (1999). Standards for educational and psychological testing. Washington, DC: AERA.

Alhabash, S., & Ma, M. (2017). A tale of four platforms: Motivations and uses of Facebook, Twitter, Instagram, and Snapchat among college students? Social Media + Society, 1-13, doi: 10.1177/2056305117691544

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4), 561-573. doi: 10.1007/BF02293814

Andrich, D. (2004). Controversy and the Rasch model: a characteristic of incompatible paradigm? Medical Care, 42(1), 1-16. doi: 10.1097/01.mlr.0000103528.48582.7c

Baker, F. B., & Kim, S. H. (2004). Item response theory: parameter estimation techniques (2nd ed.). Boca Raton, FL: CRC Press

Baulch, E., & Pramiyanti, A. (2018). Hijabers on Instagram: Using visual social media to construct the ideal Muslim woman. Social Media + Society, 1-15, doi: 10.1177/2056305118800308

Brown, I. (2015). Social media surveillance. In R. Mansell & P. H. Ang (Eds.), The international encyclopedia of digital communication and society, Hoboken, NJ: John Wiley & Sons, Inc.

Cai, L., Thissen, D., & du Toit, S. H. C. (2015a). IRTPRO for Windows (Version 3.0) [Computer software]. Lincolnwood, IL: Scientific Software International.

Cai, L., Thissen, D., & du Toit, S. H. C. (2015b). IRTPRO users guide. Lincolnwood, IL: Scientific Software International

Cai, L., Yang, J. S., & Hansen, M. (2011). Generalized full-information item bifactor analysis, Psychological Methods, 16(3), 221-248. doi: 10.1037/a0023350

Casaló, L. V., Flavián, C., & Ibáñez-Sánchez, S. (2017). Understanding consumer interaction on Instagram: The role of satisfaction, hedonism, and content characteristics. Cyberpsychology, Behavior, and Social Networking, 20(6), 369-375. doi: 10.1089/cyber.2016.0360

Chen, W. H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational Behavioral Statistics, 22(3), 265–289. doi: 10.3102/10769986022003265

Crişan, D. R., Tendeiro, J. N., & Meijer, R. R. (2017). Investigating the practical consequences of model misfit in unidimensional IRT models. Applied Psychological Measurement, 41(6), 439-455. doi: 10.1177/0146621617695522

Darvell, J., Walsh S. P., & White, K. M. (2011). Facebook tells me so: Applying the theory of planned behavior to understand partner-monitoring behavior on Facebook. Cyberpsychology, Behavior and Social Networking, 14(12), 717-722. doi: 10.1089/cyber.2011.0035

de Ayala, R. J. (1994). The influence of multidimensionality on the graded response model. Applied Psychological Measurement, 18(2), 155-170. doi: 10.1177/014662169401800205

de Ayala, R. J. (2009). The theory and practice of item response theory. New York, NY: Guilford Press.

de Vries, D. A., Moller, A. M., Wieringa, M. S., Eigenraam, A. W. & Hamelink, K. (2017). Social comparison as the thief of joy: Emotional consequences of viewing strangers’ Instagram posts. Media Psychology, 22(2), 222-245. doi: 10.1080/15213269.2016.1267647

Depaoli, S., Tiemensma, J. & Felt, J. M. (2018). Assessment of health surveys: fitting a multidimensional graded response model. Psychology, Health & Medicine, 23(1), 13-31. doi: 10.1080/13548506.2018.1447136

Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modelling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16(1), 5–18. doi: 10.1007/s11136-007-9198-0

Elphinston, R. A. & Noller, P. (2011). Time to face it! Facebook intrusion and the implications for romantic jealousy and relationship satisfaction. Cyberpsychology, Behavior and Social Networking, 14(11), 631-635. doi: 10.1089/cyber.2010.0318

Embretson, S. E. & Reise, S. P. (2000). Item response theory for psychologist. Mahwah, NJ: Lawrence Erlbaum Associates

Farrugia, R. C., (2013). Facebook and relationships: A study of how social media use is affecting long-term relationships (Unpublished Master’s Thesis). Rochester, NY: Rochester Institute of Technology.

Forero, C., & Maydeu-Olivares, A. (2009). Estimation of IRT graded response models: Limited versus full information methods. Psychological Methods, 14(3), 275–299. doi: 10.1037/a0015825

Fox, J. & Tokunaga, R. S. (2015). Romantic partner monitoring after breakups: Attachment, dependence, distress, and post-dissolution online surveillance via social networking sites. Cyberpsychology, behavior, and social networking, 18(9), 491-498. doi: 10.1089/cyber.2015.0123

García-Pérez, M. A. (2017). An analysis of (dis)ordered categories, thresholds, and crossings in difference and divide-by-total IRT models for ordered responses. The Spanish Journal of Psychology, 20(10), 1-27. doi: 10.1017/sjp.2017.11

Green, B. F., Bock, R. D., Humphreys, L. G., Linn, R. L., & Reckase, M. D. (1984). Technical guidelines for assessing computerized adaptive tests. Journal of Educational Measurement, 21(4), 347-360. doi: 10.1111/j.1745-3984.1984.tb01039.x

Hambleton, R. K., & Jones, R. W. (1994) Item parameter estimation errors and their influence on test information functions. Applied Measurement in Education, 7(3), 171-186. doi: 10.1207/s15324818ame0703_1

Hubley, A. M., & Zumbo, B. D. (2013). Psychometric characteristics of assessment procedures: An overview. In K. F. Geisinger (Ed.), APA handbook of testing and assessment in psychology (pp. 319). Washington, D.C.: American Psychological Association Press.

Huggins-Manley, A. C. & Han, H. (2017). Assessing the sensitivity of weighted least squares model fit indexes to local dependence in item response theory models. Structural Equation Modeling: A Multidisciplinary Journal, 24(3), 331-340. doi: 10.1080/10705511.2016.1247355

Instagram. (2018). Instagram statistics. Retrieved from instagram.com/press (8 June 2018)

Kang, T., & Chen, T. (2008). Performance of the generalized S-X2 item fit index for polytomous IRT models. Journal of Education Measurement, 45(4), 391–406. doi: 10.1111/j.1745-3984.2008.00071.x

Linacre, J. (2010). Two perspectives on the application of Rasch models. European Journal of Physical and Rehabilitation Medicine, 46(2), 309-310.

Lup, K., Trub, L., & Rosenthal, L. (2015). Instagram #instasad? Exploring associations among Instagram use, depressive symptoms, negative social comparison, and strangers followed. Cyberpsychology, Behavior, and Social Networking, 18(5), 247–252. doi: 10.1089/cyber.2014.0560

Lyndon, A., Bonds-Raacke, J., & Cratty, A. D. (2011). College students’ Facebook stalking of ex-partners. Cyberpsychology, Behavior, and Social Networking, 14(12), 711-716. doi: 10.1089/cyber.2010.0588

Manvelyan, C. (2016). Pics or it didn’t happen: Relationship satisfaction and its effects on Instagram use. Colloquy, 12, 87-100.

Marshall, T. C. (2012). Facebook surveillance of former romantic partners: associations with post breakup recovery and personal growth. Cyberpsychology, Behavior, and Social Networking, 15(10), 521–526. doi: 10.1089/cyber.2012.0125

Marshall, T. C., Bejanyan, K., Di Castro, G. & Lee, R. A. (2013). Attachment styles as predictors of Facebook-related jealousy and surveillance in romantic relationships. Social Psychology, 20(1), 1-22. doi: 10.1111/j.1475-6811.2011.01393.x

Maydeu-Olivares, A. (2013). Why should we assess the goodness-of-fit of IRT models? Measurement: Interdisciplinary Research and Perspectives, 11(3), 127-137.

Maydeu-Olivares, A. (2015). Evaluating the fit of IRT models. In S. P. Reise & D. A. Revicki (Eds.), Handbook of item response theory modeling: Applications to typical performance assessment (pp. 111–127). New York: Routledge.

Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71(4), 713-732. doi: 10.1007/s11336-005-1295-9

McFarland, L. A. & Ployhart, R. E. (2015). Social media: A contextual framework to guide research and practice. Journal of Applied Psychology, 100(6), 1653-1677. doi: 10.1037/a0039244

Muise, A., Christofides, E., & Desmarais, S. (2014). “Creeping” or just information seeking? Gender differences in partner monitoring in response to jealousy on Facebook. Personal Relationships, 21(1), 35-50. doi: 10.1111/pere.12014

Muraki, E. (1990). Fitting a polytomous item response model to likert-type data. Applied Psychological Measurement, 14(1), 59-71. doi: 10.1177/014662169001400106

Petscher, Y., Mitchell, A. M., & Foorman, B. R. (2015). Improving the reliability of student scores from speeded assessments: an illustration of conditional item response theory using a computer-administered measure of vocabulary. Reading and Writing, 28(1), 31-56. doi: 10.1007/s11145-014-9518-z

Pew Research Center. (2018). Social media use in 2018. Washington, DC: Pew Research Center

Rainie, L., Brenner, J., & Purcell, K. (2012). Photos and videos as social currency online. Retrieved from www.pewinternet.org/2012/09/13/photos-and-videos-as-social-currencyonline/ (8 June 2018)

Reeve, B., & Fayers, P. (2005). Applying item response theory modelling for evaluating questionnaire item and scale properties. In P. M. Fayers & R. D. Hays (Eds.), Assessing quality of life in clinical trials: Methods and practice (2nd ed., pp. 55-73), Oxford, UK: Oxford University Press

Reise, S. P. (1999). Personality measurement issues viewed through the eyes of IRT. In S. E. & S. L. Hershberger (Eds.), The new rules of measurement: What every psychologist and educator should know (pp. 219– 241). Mahwah, NJ: Erlbaum.

Ridgway, J. L., & Clayton, R. B. (2016). Instagram unfiltered: Exploring associations of body image satisfaction, Instagram #Selfie posting, and negative romantic relationship outcomes. Cyberpsychology, Behavior and Social Networking, 19(1), 2-7. doi: 10.1089/cyber.2015.0433

Rodriguez, L. M., DiBello, A. M., Overup, C. S., Neighbors, C. (2015). The price of distrust: trust, anxious attachment, jealousy, and partner abuse. Partner Abuse, 6(3), 298-319. doi: 10.1891/1946-6560.6.3.298

Samejima, F. (1969). Estimation of ability using a response pattern of graded scores, Psychometrika Monograph, 17. Richmond, VA: Psychometric Corporation

Samejima, F. (1994). Estimation of reliability coefficients using the test information function and its modifications. Applied Psychological Measurement, 18(3), 229-244. doi: 10.1177/014662169401800304

Samejima, F. (2016). Graded Response model. In W. van der Linden (Ed.), Handbook of item response theory (Vol. 1, pp. 85-100), Berlin: Springer

Serafinelli, E. (2017). Analysis of photo sharing and visual social relationships: Instagram as a case study. Photographies, 10(1), 91-111. doi: 10.1080/17540763.2016.1258657

Sörbom, D. (1989). Model modification. Psychometrika, 54(3), 371-384. doi: 10.1007/BF02294623

Stover, A. M., McLeod, L. D., Langer, M. M., Chen, W-H., & Reeve, B. B. (2019). State of the psychometric methods: patient-reported outcome measure development and refinement using item response theory. Journal of Patient-Reported Outcomes, I(1), 50. doi: 10.1186/s41687-019-0130-5

Tay, L., Vermunt, J. K., & Wang, C. (2013). Assessing the Item Response Theory with covariate (IRT-C) procedure for ascertaining differential item functioning. International Journal of Testing, 13(3), 201-222. doi: 10.1080/15305058.2012.692415

The British Psychological Society. (2012). e-Professionalism: Guidance on the use of social media by clinical psychologists. Leicester, UK: The British Psychological Society

Tokunaga, R. S. (2011). Social networking site or social surveillance site? Understanding the use of interpersonal electronic surveillance in romantic relationships. Computers in Human Behavior, 27(2), 705-713. doi: 10.1016/j.chb.2010.08.014

Tokunaga, R. S. (2016). Interpersonal surveillance over social network sites: applying a theory of negative relational maintenance and the investment model. Journal of Social and Personal Relationships, 33(2), 171-190. doi: 10.1177/0265407514568749

Umar, J. (2012). Mengenal lebih dekat konsep reliabilitas skor tes. Jurnal Pengukuran Psikologi dan Pendidikan Indonesia (JP3I), 2(2), 126-140.

Umar, J. (2014). Kerancuan dalam penggunaan istilah “construct reliability”. Jurnal Pengukuran Psikologi dan Pendidikan Indonesia (JP3I), 3(4), 393-400.

Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: current approaches and future directions. Psychological Methods, 12(1), 58-79. doi: 10.1037/1082-989X.12.1.58.

Zhang, J. (2012). The impact of variability of item parameter estimators on test information function. Journal of Educational and Behavioral Statistics, 37(6), 737-757. doi: 10.3102/1076998612458321



DOI: https://doi.org/10.22146/jpsi.36860

Article Metrics

Abstract views : 5439 | views : 3462

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jurnal Psikologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Published by Faculty of Psychology Universitas Gadjah Mada, Indonesia Building D 6th Floor No. D-606. Jl. Sosio Humaniora No. 1, Bulaksumur Yogyakarta, 55281
Email: jurnalpsikologi@ugm.ac.id
Phone/whatsApp: +6289527548628

Web
Analytics Made Easy - StatCounter View My Stats